SciPy

Welcome to pynibs’s documentation!

Contents:

pynibs

pynibs package

Subpackages

pynibs.exp package
Submodules
pynibs.exp.Mep module
class pynibs.exp.Mep.Mep(intensities, mep, intensity_min_threshold=None, mep_min_threshold=None)

Bases: object

Mep object.

fun

Kind of function to fit data with (sigmoid / exp / linear)

Type

function

fun_sig

Best fitting equivalent sigmoidal function (added by add_sigmoidal_bestfit(self))

Type

function

popt

Fitted optimal function parameters

Type

nparray of float [N_para]

popt_sig

Best fitting parameters x0, r, and amp of equivalent sigmoidal function

Type

nparray of float [3]

copt

covariance matrix of fitted parameters

Type

np.array of float [N_para x N_para]

pstd

Standard deviation of fitted parameters

Type

nparray of float [N_para]

fit

Gmodel object instance of parameter fit

Type

object instance

x_limits

Minimal and maximal value of intensity data

Type

nparray of float [2]

y_limits

Minimal and maximal value of mep data

Type

nparray of float [2]

mt

Motor threshold (MEP > 50 uV), evaluated from fitted curve, added after fitting

Type

float

Methods

calc_motor_threshold(threshold)

Determine motor threshold of stimulator depending on MEP threshold given in [mV]

eval(x, p)

Evaluating fitted function with optimal parameters in points x.

eval_fun_sig(x, p)

Evaluating optimally fitted sigmoidal function with optimal parameters in points x.

eval_opt(x)

Evaluating fitted function with optimal parameters in points x.

eval_uncertainties(x[, sigma])

Evaluating approximated uncertainty interval around fitted distribution.

fit_mep_to_function([p0])

Fits MEP data to function.

fit_mep_to_function_multistart([p0, ...])

Fits MEP data to function.

plot(label[, sigma, plot_samples, ...])

Plotting mep data and fitted curve together with uncertainties.

run_fit_multistart(fun, x, y, p0[, ...])

Run multistart approach to fit data to function.

calc_motor_threshold(threshold)

Determine motor threshold of stimulator depending on MEP threshold given in [mV]

Parameters

threshold (float) – Threshold of MEP amplitude in [mV]

Notes

Add Attributes:

Mep.mtfloat

Motor threshold for given MEP threshold.

eval(x, p)

Evaluating fitted function with optimal parameters in points x.

Parameters
  • x (nparray of float [N_x]) – Function arguments

  • p (tuple of float) – Function parameters

Returns

y – Function values

Return type

nparray of float [N_x]

eval_fun_sig(x, p)

Evaluating optimally fitted sigmoidal function with optimal parameters in points x.

Parameters
  • x (nparray of float [N_x]) – Function arguments

  • p (tuple of float) – Function parameters

Returns

y – Function values

Return type

nparray of float [N_x]

eval_opt(x)

Evaluating fitted function with optimal parameters in points x.

Parameters

x (nparray of float [N_x]) – Function arguments

Returns

y – Function values

Return type

nparray of float [N_x]

eval_uncertainties(x, sigma=1)

Evaluating approximated uncertainty interval around fitted distribution.

Parameters
  • x (nparray of float [N_x]) – Function values where uncertainty is evaluated

  • sigma (float) – Standard deviation of parameters taken into account when evaluating uncertainty interval

Returns

  • y_min (nparray of float [N_x]) – Lower bounds of y-values

  • y_max (nparray of float [N_x]) – Upper bounds of y-values

fit_mep_to_function(p0=None)

Fits MEP data to function. The algorithm tries to fit the function first to a sigmoid, then to an exponential and finally to a linear function.

Parameters

p0 (nparray of float) – Initial guess of parameter values

Notes

Add Attributes:

Mep.poptnparray of float [N_para]

Fitted optimal function parameters

Mep.coptnparray of float [N_para x N_para]

Covariance matrix of fitted parameters

Mep.pstdnparray of float [N_para]

Standard deviation of fitted parameters

Mep.funfunction

Function mep data was fitted with

Mep.fitobject instance

Gmodel object instance of parameter fit

Mep.mtfloat

Motor threshold (MEP > 50 uV).

fit_mep_to_function_multistart(p0=None, constraints=None, fun=[<function sigmoid>, <function exp0>, <function linear>])

Fits MEP data to function.

Parameters
  • p0 (np.array of float) – Initial guess of parameter values

  • constraints (dict) – Dictionary with parameter names as keys and [min, max] values as constraints

  • fun (list of functions) – Functions to incorporate in the multistart fit (e.g. [sigmoid, exp0, linear])

Notes

Add Attributes:

Mep.poptnparray of float [N_para]

Best fitted optimal function parameters

Mep.coptnparray of float [N_para x N_para]

Covariance matrix of best fitted parameters

Mep.pstdnparray of float [N_para]

Standard deviation of best fitted parameters

Mep.funfunction

Function of best fit mep data was fitted with

Mep.fitlist of fit object instances

Gmodel object instances of parameter fits

Mep.best_fit_idxint

Index of best function fit (fit[best_fit_idx])

Mep.constraintsdict

Dictionary with parameter names as keys and [min, max] values as constraints

plot(label, sigma=3, plot_samples=True, show_plot=False, fname_plot='', ylim=None, ylabel=None, fontsize_axis=10, fontsize_legend=10, fontsize_label=10, fontsize_title=10, fun=None)

Plotting mep data and fitted curve together with uncertainties. For (fun is None), the optimal function is plotted.

Parameters
  • label (str) – Title of plot

  • sigma (float) – Factor of standard deviations the uncertainty of the fit is plotted with

  • plot_samples (boolean) – Plot sampling curves of the fit in the uncertainty interval.

  • show_plot (boolean) – Show or hide plot window (TRUE / FALSE)

  • fname_plot (str) – Filename of plot showing fitted data (with .png extension!)

  • ylim (list of float [2]) – Min and max values of y-axis

  • fontsize_axis (int) – Fontsize of axis numbers

  • fontsize_legend (int) – Fontsize of Legend labels

  • fontsize_label (int) – Fontsize of axis labels

  • fontsize_title (int) – Fontsize of title

  • fun (str or None (None, 'sigmoid', 'exp', 'linear')) – Which function to plot

Returns

<File> – Plot of Mep data and fit (format: png)

Return type

.png file

run_fit_multistart(fun, x, y, p0, constraints=None, verbose=False, n_multistart=100)

Run multistart approach to fit data to function. n_multistart optimizations are performed based on random variations of the initial guess parameters p0. The fit with the lowest aic (Akaike information criterion), i.e. best fit is returned as gmodel fit instance.

Parameters
  • fun (function) – Function mep data has to be fitted with

  • x (nparray of float [N_data]) – Independent variable the data is fitted on

  • y (nparray of float [N_data]) – Dependent data the curve is fitted through

  • p0 (nparray of float) – Initial guess of parameter values

  • constraints (dict) – Dictionary with parameter names as keys and [min, max] values as constraints

  • verbose (bool) – Show output messages (True / False (Default))

  • n_multistart (int) – Number of repeated optimizations with different starting points to perform

Returns

fit – Gmodel object instance of best parameter fit with lowest parameter variance

Return type

object instance

pynibs.exp.Mep.butter_lowpass(cutoff, fs, order=5)

Setup Butter low-pass filter and return filter parameters.

Parameters
  • cutoff (float) – Cutoff frequency in [Hz]

  • fs (float) – Sampling frequency in [Hz]

  • order (int) – Filter order

Returns

b, a – Numerator (b) and denominator (a) polynomials of the IIR filter

Return type

ndarray, ndarray

pynibs.exp.Mep.butter_lowpass_filter(data, cutoff, fs, order=5)
Parameters
  • data (nparray of float [N_samples]) – Input of the digital filter

  • cutoff (float) – Cutoff frequency in [Hz]

  • fs (float) – Sampling frequency in [Hz]

  • order (int) – Filter order

Returns

y – Output of the digital filter

Return type

nparray [N_samples]

pynibs.exp.Mep.calc_p2p(sweep, tms_pulse_time=0.2, start_mep=18, end_mep=35, sampling_rate=4000, cutoff_freq=500, fn_plot=None)

Calc peak-to-peak values of an mep sweep.

Parameters
  • sweep (np.array of float [Nx1]) – Input curve

  • tms_pulse_time (float (Default: .2)) – onset time in seconds of TMS pulse trigger

  • start_mep (int (Default: 18)) – start of p2p search window, relative to TMS pulse. In [ms].

  • end_mep (int (Default: 35)) – start of p2p search window, relative to TMS pulse. In [ms].

  • sampling_rate (int (Default: 2000)) – Sampling rate in Hz

  • cutoff_freq (int (Default: 500)) – Desired cutoff frequency of the filter, Hz

  • fn_plot (str, optional, default: None) – Filename of sweep to plot (.png). If None, plot is omitted.

Returns

  • p2p (float) – Peak-to-peak value of input curve

  • sweep_filt (np.array of float) – Filtered input curve (Butter lowpass filter with specified cutoff_freq)

pynibs.exp.Mep.calc_p2p_old_exp0(sweep, start_mep=None, end_mep=None, tms_pulse_time=None, sampling_rate=None)

Calc peak-to-peak values of an mep sweep. This version was probably used in the ancient times of experiment 0.

Parameters
  • sweep (np.array of float [Nx1]) – Input curve

  • start_mep (None) –

    Not used.

    end_mep: None

    Not used.

  • tms_pulse_time (None) – Not used.

  • sampling_rate (int (Default: 2000)) – Sampling rate in Hz

Returns

p2p – Peak-to-peak value of input curve

Return type

float

pynibs.exp.Mep.calc_p2p_old_exp1(sweep, start_mep=18, end_mep=35, tms_pulse_time=None, sampling_rate=2000)

Calc peak-to-peak values of an mep sweep. This version was probably used for the first fits of experiment 1.

Parameters
  • sweep (np.array of float [Nx1]) –

    Input curve

    start_mep: Int or Float (Default: 18)

    Starttime in [ms] after TMS for MEP seach window.

    end_mep: Int or Float (Default: 35)

    Endtime in [ms] after TMS for MEP seach window.

  • tms_pulse_time (None) – Not used.

  • sampling_rate (int (Default: 2000)) – Sampling rate in Hz

Returns

p2p – Peak-to-peak value of input curve

Return type

float

pynibs.exp.Mep.dummy_fun(x, a)

Dummy function for congruence factor calculation.

pynibs.exp.Mep.exp(x, x0, r, y0)

Parametrized exponential function

y = y_0 + e^{r(x-x_0)}

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter

  • y0 (float) – Offset parameter

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.exp0(x, x0, r)

Parametrized exponential function w/o offset.

y = e^{r(x-x_0)}

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.exp0_log(x, x0, r)

Parametrized exponential function w/o offset.

y = e^{r(x-x_0)}

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.exp_log(x, x0, r, y0)

Parametrized exponential function (log)

y = y_0 + e^{r(x-x_0)}

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter

  • y0 (float) – Offset parameter

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.get_mep_elements(mep_fn, tms_pulse_time, drop_mep_idx=None, cfs_data_column=0, channels=None, time_format='delta', plot=False)

Read mep data from .cfs file.

Parameters
  • mep_fn (string) – path to …cfs-file or .txt file (Signal export)

  • tms_pulse_time (float) – Time in [s] of TMS pulse as specified in signal

  • drop_mep_idx (List of int or None (Default: None)) – Which MEPs to remove before matching.

  • cfs_data_column (int or list of int) – Column(s) of dataset in cfs file. +1 for .txt

  • channels (list of str, optional, default: None) – Channel names

  • time_format (str, optional, default="delta") – Format of mep time stamps in time_mep_lst to return - “delta”: returns list of datetime.timedelta in seconds - “hms”: returns datetime.datetime(year, month, day, hour, minute, second, microsecond)

  • plot (bool, optional, default: False) –

Returns

  • p2p_array (np.array of float [N_stim]) – Peak to peak values of N sweeps

  • time_mep_lst (list of datetime.timedelta) – Mep-timestamps

  • mep_raw_data (np.array of float [N_channel x N_stim x N_samples]) – Raw (unfiltered) MEP data

  • mep_filt_data (np.array of float [N_channel x N_stim x N_samples]) – Filtered MEP data (Butterworth lowpass filter)

  • time (np.array of float [N_samples]) – Time axis corresponding to MEP data

pynibs.exp.Mep.get_mep_sampling_rate(cfs_path)

Returns sampling rate [Hz] for cfs file.

The sampling rate is saved in the cfs header like this: …Samplingrate” : 3999.999810,

Parameters
cfs_pathstring with path to …cfs-file
Returns
intsampling rate
pynibs.exp.Mep.get_mep_virtual_subject_DVS(x, x0=0.5, r=10, amp=1, sigma_x=0, sigma_y=0, y0=0.01, seed=None)

Creates random mep data using the 2 variability source model from Goetz et al. 2014 together with a standard 3 parametric sigmoid function.

Goetz, S. M., Luber, B., Lisanby, S. H., & Peterchev, A. V. (2014). A novel model incorporating two variability sources for describing motor evoked potentials. Brain stimulation, 7(4), 541-552.

Parameters
  • x (ndarray of float [n_x]) – Normalized stimulator intensities [0 … 1]

  • x0 (float, optional, default: 0.5) – Location of turning point sigmoidal function

  • r (float, optional, default: 0.25) – Steepness of sigmoidal function

  • amp (float, optional, default: 1.0) – Saturation amplitude of sigmoidal function

  • sigma_x (float, optional, default: 0.1) – Standard deviation of additive x variability source

  • sigma_y (float, optional, default: 0.1) – Standard deviation of additive y variability source

  • y0 (float, optional, default: 1e-2) – y-offset

  • seed (int, optional, default: None) – Seed to use.

Returns

mep – Motor evoked potential values

Return type

ndarray of float [n_x]

pynibs.exp.Mep.get_mep_virtual_subject_TVS(x, p1=- 5.0818, p2=- 2.4677, p3=3.6466, p4=0.42639, p5=1.6665, mu_y_add=8.283235329759169e-06, mu_y_mult=- 0.9645334, mu_x_add=0.68827324, sigma_y_add=1.4739e-06, k=0.39316, sigma2_y_mult=0.022759, sigma2_x_add=0.023671, subject_variability=False, trial_variability=True)

Creates random mep data using the 3 variability source model from Goetz et al. 2019.

Goetz, S. M., Alavi, S. M., Deng, Z. D., & Peterchev, A. V. (2019). Statistical Model of Motor-Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(8), 1539-1545.

(There are typos in the paper but the code seems to be correct)

Originally from S. Goetz: https://github.com/sgoetzduke/Statistical-MEP-Model

rewritten from MATLAB to Python by Konstantin Weise

Parameters
  • x (ndarray of float [n_x]) – Normalized stimulator intensities [0 … 1]

  • p1 (float, optional, default: -5.0818) – First parameter of sigmoidal hilltype function

  • p2 (float, optional, default: 4.5323) – Second parameter of sigmoidal hilltype function

  • p3 (float, optional, default: 3.6466) – Third parameter of sigmoidal hilltype function

  • p4 (float, optional, default: 0.42639) – Fourth parameter of sigmoidal hilltype function

  • p5 (float, optional, default: 1.6665) – Fifth parameter of sigmoidal hilltype function

  • mu_y_add (float, optional, default: 10**-5.0818) – Mean value of additive y variability source

  • mu_y_mult (float, optional, default: -0.9645334) – Mean value of multiplicative y variability source

  • mu_x_add (float, optional, default: -0.68827324) – Mean value of additive x variability source

  • sigma_y_add (float, optional, default: 1.4739*1e-6) – Standard deviation of additive y variability source

  • k (float, optional, default: 0.39316) – Shape parameter of generalized extreme value distribution

  • sigma2_y_mult (float, optional, default: 2.2759*1e-2) – Standard deviation of multiplicative y variability source

  • sigma2_x_add (float, optional, default: 2.3671*1e-2) – Standard deviation of additive x variability source

  • subject_variability (bool, optional, default: False) – Choose if shape parameters from IO curve are sampled from random distributions to model subject variability. This does not influence the trial-to-trial variability.

  • trial_variability (bool, optional, default: True) – Enable or disable trial-to-trial variability. Disabling it will result in ideal IO curves w/o noise.

Returns

mep – Motor evoked potential values in mV

Return type

ndarray of float [n_x]

pynibs.exp.Mep.get_time_date(cfs_paths)

Get time and date of the start of the recording out of .cfs file.

Parameters

cfs_paths (str) – Path to .cfs mep file

Returns

time_date – Date an time

Return type

str

pynibs.exp.Mep.linear(x, m, n)

Parametrized linear function

y = mx+n

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • m (float) – Slope

  • n (float) – Offset

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.linear_log(x, m, n)

Parametrized log linear function

y = mx+n

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • m (float) – Slope

  • n (float) – Offset

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.load_mepobj(fname)

Loading Mep object.

Parameters

fname (str) – Filename of Mep object with .pkl extension

Returns

object

Return type

pyfempp.Mep

pynibs.exp.Mep.save_mepobj(obj, fname)

Saving an Mep object in pickle format.

Parameters
  • obj (object) – Mep object to save

  • fname (str) – Filename with .pkl extension

Returns

<File> – Mep object in pickle format (.pkl)

Return type

.pkl file

pynibs.exp.Mep.sigmoid(x, x0, r, amp)

Parametrized sigmoid function.

y = \frac{amp}{1+e^{-r(x-x_0)}}

Parameters
  • x (nparray of float [N_x]) – x-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter (steepness)

  • amp (float) – Maximum value the sigmoid converges to

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.sigmoid4(x, x0, r, amp, y0)

Parametrized sigmoid function with 4 parameters.

y = y_0 + \frac{amp - y_0}{1+e^{-r(x-x_0)}}

Parameters
  • x (nparray of float [N_x]) – x-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter (steepness)

  • amp (float) – Maximum value the sigmoid converges to

  • y0 (float) – Offset value of the sigmoid

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.sigmoid4_log(x, x0, r, amp, y0)

Parametrized log transformed sigmoid function with 4 parameters.

y = \log\left(y_0 + \frac{amp - y_0}{1+e^{-r(x-x_0)}}\right)

Parameters
  • x (nparray of float [N_x]) – x-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter (steepness)

  • amp (float) – Maximum value the sigmoid converges to

  • y0 (float) – Offset value of the sigmoid

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.Mep.sigmoid_log(x, x0, r, amp)

Parametrized log transformed sigmoid function.

y = \log\left(\frac{amp}{1+e^{-r(x-x_0)}}\right)

Parameters
  • x (nparray of float [N_x]) – x-values the function is evaluated in

  • x0 (float) – Horizontal shift along the abscissa

  • r (float) – Slope parameter (steepness)

  • amp (float) – Maximum value the sigmoid converges to

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.brainsight module
pynibs.exp.brainsight.read_targets_brainsight(fn)

Reads target coil position and orientations from .txt file and returns it as 4 x 4 x N_targets numpy array.

Parameters

fn (str) – Filename of output file.

Returns

m_nnav – Tensor containing the 4x4 matrices with coil orientation and position.

Return type

ndarray of float [4 x 4 x N_targets]

pynibs.exp.brainsight.write_targets_brainsight(targets, fn_out, names=None, overwrite=True)

Writes coil position and orientations in .txt file for import into Brainsight.

Parameters
  • targets (ndarray of float [4 x 4 x N_targets]) – Tensor containing the 4x4 matrices with coil orientation and position

  • fn_out (str) – Filename of output file

  • names (list of str, optional, default: None) – Target names (If nothing is provided they will be numbered by their order)

  • overwrite (bool, optional, default: True) – Overwrite existing .txt file

Returns

Return type

<file> .txt file containing the targets for import into Brainsight

pynibs.exp.brainvis module
pynibs.exp.brainvis.read_channel_names(fname)

Reads the channel names from .vhdr (info) file, which is recorded during EEG

Parameters

fname (str) – Filename of .vhdr info file

Returns

channel_names – List containing the channel names

Return type

list of str

pynibs.exp.brainvis.read_sampling_frequency(fname)

Reads the sampling frequency from .vhdr (info) file, which is recorded during EEG

Parameters

fname (str) – Filename of .vhdr info file

Returns

Sampling_frequency – Sampling frequency

Return type

float

pynibs.exp.exp module
pynibs.exp.exp.add_sigmoidal_bestfit(mep, p0, constraints=None)

Add best fitting sigmoidal function to instance (determined by multistart approach)

Parameters
  • mep (object) – Mep object class instance

  • p0 (float) –

  • constraints (dict) – Dictionary with parameter names as keys and [min, max] values as constraints

Returns

mep – Updated Mep object class instance with the following attributes

Return type

object

Notes

Adds Attributes

Mep.fun_sigfunction

Sigmoid function

Mep.popt_signparray of float [3]

Parameters of sigmoid function

pynibs.exp.exp.calc_outlier(coords, dev_location, dev_radius, target=None, fn_out=None, print_msg=True)

Computes median coil position and angle, identifies outliers, plots neat figure. Returns a list of idx that are not outliers

pynibs.exp.exp.cfs2hdf5(fn_cfs, fn_hdf5=None)

Converts EMG data included in .cfs file to .hdf5 format.

Parameters
  • fn_cfs (str) – Filename of .cfs file

  • fn_hdf5 (str, optional, default: None) – Filename of .hdf5 file (if not provided, a file with same name as fn_cfs will be created with .hdf5 extension)

Returns

<file> – File containing: - EMG data in f[“emg”][:] - Time axis in f[“time”][:]

Return type

.hdf5 File

pynibs.exp.exp.coil_distance_correction(exp=None, fn_exp=None, fn_exp_out=None, fn_geo_hdf5=None, remove_coil_skin_distance_outlier=False, fn_plot=None, min_dist=- 5, max_dist=2)

Corrects the distance between the coil and the head assuming that the coil is touching the head surface during the experiments. This is done since the different coil tracker result in different coil head distances due to tracking inaccuracies. Also averages positions and orientations over the respective condition and writes both mean position and orientation for every condition in fn_exp_out.

Depending on if exp (dict containing lists) or fn_exp (csv file) is provided it returns the outlier corrected dict or writes a new <fn_exp_out>.csv file.

Parameters
  • exp (list of dict or dict of list, optional, default: None) – List of dictionaries containing the experimental data

  • fn_exp (str) – Filename (incl. path) of experimental .csv file

  • fn_exp_out (str) – Filename (incl. path) of distance corrected experimental .csv file

  • fn_geo_hdf5 (str) – Filename (incl. path) of geometry mesh file (.hdf5)

  • remove_coil_skin_distance_outlier (bool) – Remove coil positions, which are more than +- 2 mm located from the zero mean skin surface.

  • fn_plot (str, default: None (fn_geo_hdf5 folder)) – Folder where plots will be saved in.

  • min_dist (int) – Ignored.

  • max_dist (int) – Ignored.

Returns

  • <File> (.csv file) – experimental_dc.csv file with distance corrected coil positions

  • or

  • exp (dict) – Dictionary containing the outlier corrected experimental data

pynibs.exp.exp.coil_distance_correction_matsimnibs(matsimnibs, fn_mesh_hdf5, distance=0, remove_coil_skin_distance_outlier=False)

Corrects the distance between the coil and the head assuming that the coil is located at a distance “d” with respect to the head surface during the experiments. This is done since the different coil tracker result in different coil head distances due to tracking inaccuracies.

Parameters
  • matsimnibs (ndarray of float [4 x 4] or [4 x 4 x n_mat]) – Tensor containing matsimnibs matrices

  • fn_mesh_hdf5 (str) – .hdf5 file containing the head mesh

  • distance (float) – Target distance in (mm) between coil and head due to hair layer. All coil positions are moved to this distance.

  • remove_coil_skin_distance_outlier (bool) – Remove coil positions, which are more than +- 6 mm located from the skin surface.

Returns

matsimnibs – Tensor containing matsimnibs matrices with distance corrected coil positions

Return type

ndarray of float [4 x 4 x n_mat]

pynibs.exp.exp.coil_outlier_correction_cond(exp=None, fn_exp=None, fn_exp_out=None, outlier_angle=5.0, outlier_loc=3.0)

Searches and removes outliers of coil orientation and location w.r.t. the average orientation and location from all zaps. It generates plots of the individual conditions showing the outliers in the folder of fn_exp_out. Depending on if exp (dict containing lists) or fn_exp (csv file) is provided it returns the outlier corrected dict or writes a new <fn_exp_out>.csv file.

Parameters
  • exp (list of dict, optional, default: None) – List of dictionaries containing the experimental data

  • fn_exp (str, optional, default: None) – Filename (incl. path) of experimental .csv file

  • fn_exp_out (str, optional, default: None) – Filename (incl. path) of corrected experimental .csv file

  • outlier_angle (float, optional, default: 5.) – Coil orientation outlier “cone” around axes in +- deg. All zaps with coil orientations outside of this cone are removed.

  • outlier_loc (float, optional, default: 3.) – Coil position outlier “sphere” in +- mm. All zaps with coil locations outside of this sphere are removed.

Returns

  • <File> (.csv file) – experimental_oc.csv file with outlier corrected coil positions

  • <Files> (.png files) – Plot showing the coil orientations and locations (folder_of_fn_exp_out/COND_X_coil_position.png)

  • or

  • exp (dict) – Dictionary containing the outlier corrected experimental data

pynibs.exp.exp.convert_csv_to_hdf5(fn_csv, fn_hdf5, overwrite_arr=True, verbose=False)

Wrapper from experiment.csv to experiment.hdf5

Saves all relevant columns from the (old) experiment.csv file to an .hdf5 file. fn_hdf5:/stim_data/

|–coil_sn |–current |–date |–time_diff |–time_mep |–time_tms |–ts_tms |–coil0 # <- all coil0_** columns |–coil1 # <- all coil1_** columns |–coil_mean # <- all coil_mean_** columns

All columns not found in experiment.csv are ignored (and a warning is thrown).

pynibs.exp.exp.create_dictionary(xml_paths, cfs_paths, im, coil_sn, nii_exp_path, nii_conform_path, patient_id, tms_pulse_time, drop_mep_idx, mep_onsets, nnav_system, mesh_approach='headreco', temp_dir=None, cfs_data_column=0, channels=None, plot=False)

Create dictionary ready to write into .csv-file.

Parameters
  • xml_paths (list of str) – Paths to coil0-file and optionally coil1-file if there is no coil1-file, use empty string

  • cfs_paths (str) – Path to .cfs mep file

  • im (list of str) – List of path to the instrument-marker-file or list of strings containing the instrument marker

  • coil_sn (str) – Coil-serial-number

  • nii_exp_path (str) – Path to the .nii file that was used in the experiment

  • nii_conform_path (str) – Path to the conform*.nii file used to calculate the E-fields with SimNIBS

  • patient_id (str) – Patient id

  • tms_pulse_time (float) – Time in [s] of TMS pulse as specified in signal

  • drop_mep_idx (List of int or None) – Which MEPs to remove before matching.

  • mep_onsets (List of int or None (Default: None)) – If there are multiple .cfs per TMS Navigator sessions, onsets in [ms] of .cfs. E.g.: [0, 71186].

  • temp_dir (str, optional, default: None (fn_exp_mri_nii folder)) – Directory to save temporary files (transformation .nii and .mat files)

  • cfs_data_column (int or list of int) – Column(s) of dataset in .cfs file.

  • channels (list of str, optional, default: None) – Channel names

  • nnav_system (str) – Type of neuronavigation system (“Localite”, “Visor”)

  • mesh_approach (str, optional, default: "headreco") – Approach the mesh is generated with (“headreco” or “mri2mesh”)

  • plot (bool, optional, default: False) – Plot MEPs and p2p evaluation

Returns

dict_lst – Fields of the .csv-file

Return type

list of dict

pynibs.exp.exp.get_cnt_infos(fn_cnt)

Read some meta information from .cnt file

Returns

Return type

dict d

pynibs.exp.exp.get_coil_flip_m(source_system='simnibs', target_system=None)

Returns a flimp matrix 4x4 to flip coil axis from one system to another.

Parameters
  • source_system (str) – Atm only possible source: ‘simnibs’

  • target_system – tmsnavigator, visor, brainsight

Returns

flip_m – shape: 4x4

Return type

np.ndarray

pynibs.exp.exp.get_coil_sn_lst(fn_coil)
pynibs.exp.exp.get_csv_matrix(dictionary)
pynibs.exp.exp.get_intensity_e(e1, e2, target1, target2, radius1, radius2, headmesh, rmt=1, roi='midlayer_lh_rh', verbose=False)

Computes the stimulator intensity adjustment factor based on the electric field

Parameters
  • e1 (str) – .hdf5 e field with midlayer

  • e2 (str) – .hdf5 e field with midlayer

  • target1 (np.ndarray (3,)) – Coordinates of cortical site of MT

  • target2 (np.ndarray (3,)) – Coordinates of cortical target site

  • radius1 (float) – Electric field of field1 is averaged over elements inside this radius around target1

  • radius2 (float) – Electric field of field2 is averaged over elements inside this radius around target2

  • headmesh (str) – .hdf5 headmesh

  • rmt (float, optional, default=0) – Resting motor threshold to be corrected

  • roi (str, optional, default='midlayer_lh_rh') – Name of roi. Expected to sit in mesh[‘/data/midlayer/roi_surface/’]

  • verbose (bool, optional, Default: false) – Print verbosity information.

Returns

rmt_e_corr – Adjusted stimulation intensity for target2

Return type

float

pynibs.exp.exp.get_intensity_e_old(mesh1, mesh2, target1, target2, radius1, radius2, rmt=1, verbose=False)

Computes the stimulator intensity adjustment factor based on the electric field

Something weird is going on here - check simnibs coordinates of midlayer before usage.

Parameters
  • mesh1 (str or simnibs.msh.mesh_io.Msh) – Midlayer mesh containing results of the optimal coil position of MT in the midlayer (e.g.: …/subject_overlays/00001.hd_fixed_TMS_1-0001_MagVenture_MCF_B65_REF_highres.ccd_scalar_central.msh)

  • mesh2 (str or simnibs.msh.mesh_io.Msh) – Midlayer mesh containing results of the optimal coil position of the target in the midlayer (e.g.: …/subject_overlays/00001.hd_fixed_TMS_1-0001_MagVenture_MCF_B65_REF_highres.ccd_scalar_central.msh)

  • target1 (np.ndarray (3,)) – Coordinates of cortical site of MT

  • target2 (np.ndarray (3,)) – Coordinates of cortical target site

  • radius1 (float) – Electric field in target 1 is averaged over elements inside this radius

  • radius2 (float) – Electric field in target 2 is averaged over elements inside this radius

  • rmt (float, optional, default=0) – Resting motor threshold, which will be corrected

  • verbose (bool, optional, Default: false) – Print verbosity information.

Returns

rmt_e_corr – Adjusted stimulation intensity for target2

Return type

float

pynibs.exp.exp.get_intensity_stokes(mesh, target1, target2, spat_grad=3, rmt=0, verbose=False, scalp_tag=1005, roi=None)

Computes the stimulator intensity adjustment factor according to Stokes et al. 2005 (doi:10.1152/jn.00067.2005). Adjustment is based on target-scalp distance differences: adj = (Dist2-Dist1)*spat_grad

Parameters
  • mesh (str or simnibs.msh.mesh_io.Msh) – Mesh of the head model

  • target1 (np.ndarray (3,)) – Coordinates of cortical site of MT

  • target2 (np.ndarray (3,)) – Coordinates of cortical target site

  • spat_grad (float) – Spatial gradient. Default: 3

  • rmt (float, optional, default=0) – Resting motor threshold, which will be corrected

  • scalp_tag (int, optional, default: 1005) – Tag in the mesh where the scalp is to be set. Default: 1005

  • verbose (bool, optional, Default: false) – Print verbosity information.

  • roi (np.ndarray (3,N)) – Array of nodes to project targets onto

Returns

rmt_stokes – Adjusted stimulation intensity for target2

Return type

float

pynibs.exp.exp.get_patient_id(xml_path)

Read patiend-ID.

Parameters

xml_path (str) – Path to coil0-file

Returns

xml_pd.find(‘patientID’).text – ID of patient

Return type

str

pynibs.exp.exp.load_matsimnibs_txt(fn_matsimnibs)

Loading matsimnibs matrices from .txt file.

Parameters

fn_matsimnibs (str) – Filename of .txt file the matsimnibs matrices are stored in

Returns

matsimnibs – Tensor containing matsimnibs matrices

Return type

ndarray of float [4 x 4] or [4 x 4 x n_mat]

pynibs.exp.exp.match_mep_and_triggermarker_timestamps(mep_time_lst, xml_paths, bnd_factor=0.495)

Sort out timestamps of mep and tms files that do not match.

Parameters
  • mep_time_lst (list of datetime.timedelta) – timedeltas of MEP recordings.

  • xml_paths (list of str) – Paths to coil0-file and optionally coil1-file if there is no coil1-file, use empty string

  • bnd_factor (float, optional, default: 0.99/2) – Bound factor relative to interstimulus interval in which +- interval to match neuronavigation and mep data from their timestamps. (0 means perfect matching, 0.5 means +- half interstimulus interval)

Returns

  • tms_index_lst (list of int) – Indices of tms-timestamps that match

  • mep_index_lst (list of int) – Indices of mep-timestamps that match

  • tms_time_lst (list of datetime) – TMS timstamps

pynibs.exp.exp.merge_exp_data_brainsight(subject, exp_idx, mesh_idx, coil_outlier_corr_cond=False, remove_coil_skin_distance_outlier=True, coil_distance_corr=True, verbose=False, plot=False)

Merge the TMS coil positions and the mep data into an experiment.hdf5 file.

Parameters
  • subject (pyfempp.subject) – Subject object

  • exp_idx (str) – Experiment ID

  • mesh_idx (str) – Mesh ID

  • coil_outlier_corr_cond (bool) – Correct outlier of coil position and orientation (+-2 mm, +-3 deg) in case of conditions

  • remove_coil_skin_distance_outlier (bool) – Remove outlier of coil position lying too far away from the skin surface (+- 5 mm)

  • coil_distance_corr (bool) – Perform coil <-> head distance correction (coil is moved towards head surface until coil touches scalp)

  • verbose (bool) – Plot output messages

  • plot (bool, optional, default: False) – Plot MEPs and p2p evaluation

pynibs.exp.exp.merge_exp_data_localite(subject, coil_outlier_corr_cond, remove_coil_skin_distance_outlier, coil_distance_corr, exp_idx=0, mesh_idx=0, drop_mep_idx=None, mep_onsets=None, cfs_data_column=None, channels=None, verbose=False, plot=False)

Merge the TMS coil positions (TriggerMarker) and the mep data into an experiment.hdf5 file.

Parameters
  • subject (pyfempp.subject) – Subject object

  • exp_idx (str) – Experiment ID

  • mesh_idx (str) – Mesh ID

  • coil_outlier_corr_cond (bool) – Correct outlier of coil position and orientation (+-2 mm, +-3 deg) in case of conditions

  • remove_coil_skin_distance_outlier (bool) – Remove outlier of coil position lying too far away from the skin surface (+- 5 mm)

  • coil_distance_corr (bool) – Perform coil <-> head distance correction (coil is moved towards head surface until coil touches scalp)

  • drop_mep_idx (List of int or None) – Which MEPs to remove before matching.

  • mep_onsets (List of int or None (Default: None)) – If there are multiple .cfs per TMS Navigator sessions, onsets in [ms] of .cfs. E.g.: [0, 71186].

  • cfs_data_column (int or list of int) – Column(s) of dataset in .cfs file.

  • channels (list of str) – List of channel names

  • verbose (bool) – Plot output messages

  • plot (bool, optional, default: False) – Plot MEPs and p2p evaluation

pynibs.exp.exp.merge_exp_data_visor(subject, exp_id=0, mesh_idx=0, verbose=False)

Merges all experimental data from visor experiment into one .hdf5 file

Parameters
  • subject (Subject object) – Subject object

  • exp_id (int) – Experiment index

  • mesh_idx (int) – Mesh index

  • verbose (bool) – Print output

Returns

<File> – File containing the stimulation and physiological data as pandas dataframes: - “stim_data”: Stimulation parameters (e.g. coil positions, etc.) - “phys_data/info/EMG”: Information about EMG data recordings (e.g. sampling frequency, etc.) - “phys_data/info/EEG”: Information about EEG data recordings (e.g. sampling frequency, etc.) - “phys_data/raw/EMG”: Raw EMG data - “phys_data/raw/EEG”: Raw EEG data - “phys_data/postproc/EMG”: Post-processed EMG data (e.g. filtered, p2p, etc.) - “phys_data/postproc/EEG”: Post-processed EEG data (e.g. filtered, p2p, etc.)

Return type

.hdf5 file

pynibs.exp.exp.nnav2simnibs(fn_exp_nii, fn_conform_nii, m_nnav, nnav_system, mesh_approach='headreco', fiducials=None, orientation='RAS', fsl_cmd=None, target='simnibs', temp_dir=None, rem_tmp=False, verbose=False)

Transforming TMS coil positions from neuronavigation to simnibs space

Parameters
  • fn_exp_nii (str) – Filename of .nii file the experiments were conducted with

  • fn_conform_nii (str) – Filename of .nii file from SimNIBS mri2msh function (e.g.: …/fs_subjectID/subjectID_T1fs_conform.nii.gz)

  • m_nnav (nparray [4 x 4 x N]) – Position matrices from neuronavigation

  • nnav_system (str) – Neuronavigation system: - “Localite” … Localite neuronavigation system - “Visor” … Visor neuronavigation system from ANT - “Brainsight” … Brainsight neuronavigation system from Rougue Research

  • mesh_approach (str, optional, default: "headreco") – Approach the mesh is generated with (“headreco” or “mri2mesh”)

  • fiducials (np.array of float [3 x 3]) – Fiducial points in ANT nifti space from file (e.g.: /data/pt_01756/probands/33791.b8/exp/1/33791.b8_recording/MRI/33791.b8_recording.mri) (x frontal-occipital, y right-left, z inferior-superior) VoxelOnPositiveXAxis (Nasion, first row) 221 131 127 VoxelOnPositiveYAxis (left ear, second row) 121 203 105 VoxelOnNegativeYAxis (right ear, third row) 121 57 105

  • orientation (str) – Orientation convention (‘RAS’ or ‘LPS’) (can be read from neuronavigation .xml file under coordinateSpace=”RAS”)

  • fsl_cmd (str) – bash command to start FSL environment (Default: FSL)

  • target (str, optional, default: 'simnibs') – Either transform to ‘simnibs’ or to ‘nnav’ space

  • temp_dir (str, optional, default: None (fn_exp_mri_nii folder)) – Directory to save temporary files (transformation .nii and .mat files)

  • rem_tmp (bool, optional, default: False) – Remove temporary files from registration

  • verbose (boolean) – Print output (True / False)

Returns

m_simnibs

Return type

nparray of float [4 x 4 x N]

pynibs.exp.exp.outliers_mask(data, m=2.0)
pynibs.exp.exp.print_time(relation, tms_time, tms_time_index, mep_time, mep_time_index, time_bnd_l, time_bnd_h)

Print timestamps that do not match.

Parameters
  • relation (str) – ‘bigger’ or ‘smaller’

  • tms_time (datetime.timedelta) – TMS timestamps

  • tms_time_index (int) – Index of tms timestamp

  • mep_time (datetime.timedelta) – Mep timestamps

  • mep_time_index (int) – Index of mep timestamps

  • time_bnd_l (datetime.timedelta) – Lowest datetime timestamp for matching

  • time_bnd_h (datetime.timdelta) – Highest datetime timestamp for matching

pynibs.exp.exp.read_csv(csv_path)

Read dictionary from .csv-file.

Parameters

csv_path (str) – Path to .csv-file

Returns

dict_lst – Field name of the .csv-file as the key

Return type

dict of list

pynibs.exp.exp.read_exp_stimulations(fname_results_conditions, fname_simpos, filter_bad_trials=False, drop_idx=None)

Reads results_conditions.csv and simPos.csv and returns data.

Parameters
  • fname_results_conditions (str) – Filename of results_conditions.csv file

  • fname_simpos (str) – Filename of simPos.csv file

  • filter_bad_trials (bool, False) – If true, some filtering will be done to exclude erroneous data

  • drop_idx (list, empty) – Indices of trials to drop

Returns

  • positions_all (list of np.ndarrays of float [N_zaps x [4 x 4]]) – List of position matrices of TMS coil, formatted in simnibs style

    \begin{bmatrix}
 | & | & | &  |   \\
 x & y & z & pos  \\
 | & | & | &  |   \\
 0 & 0 & 0 &  1   \\
\end{bmatrix}

  • conditions (list of str [N_zaps]) – Str labels of the condition corresponding to each zap

  • position_list (list of float and str [N_zaps x 55]) – List of data stored in results_conditions.csv (condition, MEP amplitude, locations of neuronavigation trackers)

  • mep_amp (np.array of float [N_zaps]) – MEP amplitude in [V] corresponding to each zap

  • intensities (np.array of float [N_zaps]) – Stimulator intensities corresponding to each zap

  • fails_idx (np.array(N_fails_idx x 1) (only if filter_bad_trials)) – Which trials were dropped through filtering?

pynibs.exp.exp.save_matsimnibs_txt(fn_matsimnibs, matsimnibs)

Saving matsimnibs matrices in .txt file.

Parameters
  • fn_matsimnibs (str) – Filename of .txt file the matsimnibs matrices are stored in

  • matsimnibs (ndarray of float [4 x 4] or [4 x 4 x n_mat]) – Tensor containing matsimnibs matrices

Returns

<File> – Textfile containing the matsimnibs matrices

Return type

.txt file

pynibs.exp.exp.sort_by_condition(exp, conditions_selected=None)

Sort experimental dictionary from experimental.csv into list by conditions.

Parameters
  • exp (dict or list of dict) – Dictionary containing the experimental data information

  • conditions_selected (str or list of str, Default=None) – List of conditions returned by the function (in this order), the others are omitted, If None, all conditions are returned

Returns

exp_cond – List of dictionaries containing the experimental data information sorted by condition

Return type

list of dict

pynibs.exp.exp.sort_data_by_condition(conditions, return_alph_sorted=True, conditions_selected=None, *data)

Sorts data by condition and returns tuples of data with corresponding labels.

Parameters
  • conditions (list of str [N_zaps]) – Str labels of the condition corresponding to each data

  • return_alph_sorted (Boolean, Default True) – Shall returns be in alphabetically or original order

  • conditions_selected (list of str or None) – List of conditions returned by the function (in this order), the others are omitted

  • data (tuple of data indexed by condition [N_data x N_zaps x m]) – Data to sort

Returns

  • cond_labels (list of str [N_cond]) – Labels of conditions

  • data_sorted (tuple of sorted data [N_cond x N_data x N_zaps x m]) – Sorted data by condition

pynibs.exp.exp.splitext_niigz(fn)

Splitting extension(s) from .nii or .nii.gz file

Parameters

fn (str) – Filename of input image .nii or .nii.gz file

Returns

  • path (str) – Path and filename without extension(s)

  • ext (str) – Extension, either .nii or .nii.gz

pynibs.exp.exp.square(x, a, b, c)

Parametrized quadratic function

y = ax^2+bx+c

Parameters
  • x (nparray of float [N_x]) – X-values the function is evaluated in

  • a (float) – Slope parameter of x^2

  • b (float) – Slope parameter of x

  • c (float) – Offset parameter

Returns

y – Function value at argument x

Return type

nparray of float [N_x]

pynibs.exp.exp.toRAS(fn_in, fn_out)

Transforming MRI .nii image to RAS space.

Parameters
  • fn_in (str) – Filename of input image .nii file

  • fn_out (str) – Filename of output image .nii file in RAS space

Returns

<File> – .nii image in RAS space (fn_out)

Return type

.nii file

pynibs.exp.exp.write_csv(csv_output_path, dict_lst)

Write dictionary into .csv-file.

Parameters
  • csv_output_path (str) – Path to output-file

  • dict_lst (list of dict) – Fields of the .csv-file

pynibs.exp.exp.write_triggermarker_stats(tm_array, idx_keep, idx_outlier, idx_zero, fn, **kwargs)

Write some stats about the triggermarker analyses to a .csv . Use kwargs to add some more information, like subject id, experiment, conditions, etc

Call example: pynibs.write_triggermarker_stats(tm_array, idx_keep, idx_outlier, idx_zero,

fn=f”{output_folder}/coil_stats.csv”,subject=subject_id, experiment=exp, cond=cond)

tm_arraynp.ndarray

(N zaps * 4 * 4)

pynibs.exp.tmsnav module

Functions to import data from Localite TMS Navigator

pynibs.exp.tmsnav.arrays_similar(tm_matrix, tm_matrix_post, pos_rtol=0, pos_atol=3.6, ang_rtol=0.1, ang_atol=0.1)

Compares angles and position for similarity.

Splitting the comparison into angles and position is angebracht, as the absolute tolereance (atol) should be different for angles (degree) and position (millimeter) comparisons.

pynibs.exp.tmsnav.get_instrument_marker(im_path)
pynibs.exp.tmsnav.get_marker(im_path, markertype)

Read instrument-marker and conditions from Neuronavigator .xml-file.

Parameters

im_path (str or list of str) – Path to instrument-marker-file

Returns

  • im_array (np.array of float [Mx4x4]) – Instrument-marker-matrices

  • im_cond_lst (list of str) – Labels of the instrument-marker-conditions

  • im_marker_times (list of float) – Onset times

pynibs.exp.tmsnav.get_single_marker_file(im_path, markertype)

Read instrument-marker and conditions from Neuronavigator .xml-file.

Parameters

im_path (str or list of str) – Path to instrument-marker-file

Returns

  • im_array (np.array of float [Mx4x4]) – Instrument-marker-matrices

  • im_cond_lst (list of str) – Labels of the instrument-marker-conditions

pynibs.exp.tmsnav.get_tms_elements(xml_paths, verbose=False)

Read needed elements out of the tms-xml-file.

Parameters
  • xml_paths (list of str or str) – Paths to coil0-file and optionally coil1-file if there is no coil1-file, use empty string

  • verbose (bool, optional, default: False) – Print output messages

Returns

  • coils_array (nparray of float [3xNx4x4]) – Coil0, coil1 and mean-value of N 4x4 coil-arrays

  • ts_tms_lst (list of int [N]) – Timestamps of valid tms-measurements

  • current_lst (list of int [N]) – Measured currents

  • idx_invalid (list of int) – List of indices of invalid coil positions (w.r.t. all timestamps incl invalid)

pynibs.exp.tmsnav.marker_is_empty(arr)
pynibs.exp.tmsnav.markers_are_empty(arr)
pynibs.exp.tmsnav.match_instrument_marker_file(xml_paths, im_path)

Assign right instrument marker condition to every triggermarker (get instrument marker out of file).

Parameters
  • xml_paths (list of str) – Paths to coil0-file and optionally coil1-file if there is no coil1-file, use empty string

  • im_path (str) – Path to instrument-marker-file

Returns

coil_cond_lst – Right conditions

Return type

list of str

pynibs.exp.tmsnav.match_instrument_marker_string(xml_paths, condition_order)

Assign right instrument marker condition to every triggermarker (get instrument marker out of list of strings).

Parameters
  • xml_paths (list of str) – Paths to coil0-file and optionally coil1-file if there is no coil1-file, use empty string

  • condition_order (list of str) – Conditions in the right order

Returns

coil_cond_lst

Return type

list of strings containing the right conditions

pynibs.exp.tmsnav.match_tm_to_im(tm_array, im_array, tms_time_arr, tms_cur_arr)

Match triggermarker with instrumentmarker and get index of best fitting instrumentmarker.

Parameters
  • tm_array (ndarray of float [Nx4x4]) – Mean-value of Nx4x4 coil matrices

  • im_array (ndarray of float [Mx4x4]) – Instrument-marker-matrices

Returns

im_index_lst – Indices of best fitting instrumentmarkers

Return type

list of int

pynibs.exp.tmsnav.read_coil(xml_ma)

Read coil-data from xml element.

Parameters

xml_ma (xml-element) – Coil data

Returns

coil – Coil elements

Return type

nparray of float [4x4]

pynibs.exp.tmsnav.read_triggermarker_localite(fn_xml)

Read instrument-marker and conditions from neuronavigator .xml-file.

Parameters

fn_xml (str) – Path to TriggerMarker.xml file (e.g. Subject_0/Sessions/Session_YYYYMMDDHHMMSS/TMSTrigger/TriggerMarkers_Coil1_YYYYMMDDHHMMSS.xml)

Returns

m_nnavndarray of float [4x4xN]

Neuronavigation coordinates of N stimuli (4x4 matrices)

didtndarray of float [N]

Rate of change of coil current in (A/us)

stim_intndarray of float [N]

Stimulator intensity in (%)

descrlist of str [N]

Labels of the instrument-marker-conditions

rec_timelist of str [N]

Recording time in ms

Return type

list of

pynibs.exp.visor module

Functions to import data from ANT Visor 2 / ANT EEG software go here

pynibs.exp.visor.filter_emg(emg, fs)

Filter emg signals

Parameters
  • emg (list of np.array [n_stimuli]) – Raw EMG data. Each list entry contains a np.array of size [n_samples x n_channel] Each channel is filtered in the same way.

  • fs (float) – Sampling frequency

Returns

emg_filt – Filtered EMG data

Return type

list of np.array [n_stimuli]

pynibs.exp.visor.get_cnt_data(fn, channels='all', trigger_val='1', max_duration=10, fn_hdf5=None, path_hdf5=None, verbose=False, return_data=False)

Reads ANT .cnt EMG/EEG data file and chunks timesieries into triggerN - trigggerN+1 Can directly write the zaps into hdf5 if argument is provided. Starting with the first trigger and ending with get_sample_count()-1

Parameters
  • fn (str) – .cnt Filename

  • channels (str | int | list of int | list of str) – Which channel(s) to return. Default: all. Can be channel number(s) or channel name(s).

  • trigger_val (str) – Trigger value to read as zap trigger. Default: ‘1’

  • max_duration (int) – Maximum duration in [s] per chunk. Rest is dropped.

  • fn_hdf5 (str, optional, default: None) – If given, cnt data is written into hdf5 file under “path_hdf5” as pandas dataframe with column name “qoi_name” and nothing is returned. Default: None

  • path_hdf5 (str, optional, default: None) – If fn_hdf5, path of pandas dataframe where the data is saved (e.g. “/phys_data/raw/EEG”)

  • verbose (bool) – Some verbosity messages (default: False)

  • return_data (bool) – Return data as list of np.array

Returns

data_lst – List of EEG/EMG data. Only returned if fn_hdf5 is not None

Return type

list of np.ndarray with shape=(samples,channels), optional

pynibs.exp.visor.get_instrument_marker(im_path, verbose=False)

Return all instrument markers from visor .cnt file Coordinate system in raw ANT space (NLR) defined as:

origin: intersection between line of ear fiducials and nasion x-axis: origin -> nasion y-axis: origin -> left ear z-axis: origin -> superior

Parameters
  • im_path (str) – Path to instrument-marker-file .cnt file

  • verbose (bool) – Some verbosity messages (default: False)

Returns

im_list – List containing stimulation parameters: - coil_mean_raw [4 x 4 matrix] - StimulusID - etc…

Return type

list of dict

pynibs.exp.visor.read_nlr(fname)

Reads NLR coordinates from *_recording.mri file

Parameters

fname

Returns

fiducials – The rows contain the fiducial points in ANT nifit space (nasion, left ear, right ear)

Return type

np.array of float [3 x 3]

Module contents
pynibs.models package
Module contents
pynibs.util package
Submodules
pynibs.util.cross module
pynibs.util.cross_setup module
pynibs.util.pyCross module
pynibs.util.quality_measures module
pynibs.util.quality_measures.c_map_comparison(c1, c2, t1, t2, nodes, tris)

Compares two c-maps in terms of NRMSD and calculates the geodesic distance between the hotspots

Parameters
  • c1 (ndarray of float [n_ele]) – First c-map

  • c2 (ndarray of float [n_ele]) – Second c-map (reference)

  • t1 (ndarray of float [3]) – Coordinates of the hotspot in the first c-map

  • t2 (ndarray of float [3]) – Coordinates of the hotspot in the second c-map

  • nodes (ndarray of float [n_nodes x 3]) – Node coordinates

  • tris (ndarray of float [n_tris x 3]) – Connectivity of ROI elements

Returns

  • nrmsd (float) – Normalized root mean square deviation between the two c-maps in (%)

  • gdist (float) – Geodesic distance between the two hotspots in (mm)

pynibs.util.quality_measures.euclidean_dist(nodes, tris, source, source_is_node=True)

Returns euclidean_dist distance of all nodes to source node (tria).

This is just a wrapper for the gdist package.

Example: with h5py.File(fn,’r’) as f:

tris = f[‘/mesh/elm/triangle_number_list’][:] nodes = f[‘/mesh/nodes/node_coord’][:]

nodes_dist_euc, tris_dist_euc = euclidean_dist(nodes, tris, 3017)

pynibs.write_data_hdf5(data_fn,

data=[tris_dist_euc, nodes_dist_euc], data_names=[“tris_dist_euc”, “nodes_dist_euc”, “])

pynibs.write_xdmf(data_fn,hdf5_geo_fn=fn)

Parameters
  • nodes (np.ndarray(n_nodes,3)) –

  • tris (np.ndarray(n_tris,3)) –

  • source (np.ndarray(int) or int) – geodesic distances of all nodes to this will be computed

  • source_is_node (bool) – Is source a node idx or a tr idx

Returns

  • nodes_dist (np.ndarray(n_nodes,))

  • tres_dist (np.ndarray(n_tris,))

pynibs.util.quality_measures.geodesic_dist(nodes, tris, source, source_is_node=True)

Returns geodesic distance of all nodes to source node (or tri).

This is just a wrapper for the gdist package.

Example: with h5py.File(fn,’r’) as f:

tris = f[‘/mesh/elm/triangle_number_list’][:] nodes = f[‘/mesh/nodes/node_coord’][:]

nodes_dist_ged, tris_dist_ged = geodesic_dist(nodes, tris, 3017)

pynibs.write_data_hdf5(data_fn,

data=[tris_dist_ged, nodes_dist_ged], data_names=[“tris_dist_ged”, “nodes_dist_ged”])

pynibs.write_xdmf(data_fn,hdf5_geo_fn=fn)

Parameters
  • nodes (np.ndarray(n_nodes,3)) –

  • tris (np.ndarray(n_tris,3)) –

  • source (np.ndarray(int) or int) – Geodesic distances of all nodes (or tri) to this will be computed

  • source_is_node (bool) – Is source a node idx or a tr idx

Returns

  • nodes_dist (np.ndarray(n_nodes,))

  • tris_dist (np.ndarray(n_tris,))

pynibs.util.quality_measures.nrmsd(array, array_ref, error_norm='relative', x_axis=False)

Determine the normalized root mean square deviation between input data and reference data.

normalized_rms = get_normalized_rms(array, array_ref)

Parameters
  • array (np.ndarray) – input data [ (x), y0, y1, y2 … ]

  • array_ref (np.ndarray) – reference data [ (x_ref), y0_ref, y1_ref, y2_ref … ] if array_ref is 1D, all sizes have to match

  • error_norm (str, optional, default="relative") – Decide if error is determined “relative” or “absolute”

  • x_axis (boolean, optional, default=False) – If True, the first column of array and array_ref is interpreted as the x-axis, where the data points are evaluated. If False, the data points are assumed to be at the same location.

Returns

normalized_rms – Normalized root mean square deviation between the columns of array and array_ref

Return type

ndarray of float [array.shape[1]]

pynibs.util.util module
pynibs.util.util.add_center(var)

Adds center to argument list.

Parameters

var (list of float [2]) – List containing two values [f1,f2]

Returns

out – List containing the average value in the middle [f1, mean(f1,f2), f2]

Return type

list of float [3]

pynibs.util.util.bash(command)

Executes bash command and returns output message in stdout (uses os.popen).

Parameters

command (str) – Bash command

Returns

  • output (str) – Output from stdout

  • error (str) – Error message from stdout

pynibs.util.util.bash_call(command)

Executes bash command and returns output message in stdout (uses subprocess.Popen).

Parameters

command (str) – bash command

pynibs.util.util.calc_n_network_combs(n_e, n_c, n_i)

Determine number of combinations if all conditions may be replaced between N_i elements (mixed interaction)

Parameters
  • n_e (int) – Number of elements in the ROI

  • n_c (int) – Number of conditions (I/O curves)

  • n_i (int) – Number of maximum interactions

Returns

n_comb – Number of combinations

Return type

int

pynibs.util.util.calc_tet_volume(points, abs=True)

Calculate tetrahedra volumes.

pynibs.util.util.calc_tri_surface(points)

Calculate triangle surface areas.

pynibs.util.util.cell_data_to_point_data(tris, data_tris, nodes, method='nearest')

A wrapper for scipy.interpolate.griddata to interpolate cell data to node data.

Parameters
  • tris (np.ndarray) – element number list, (n_tri, 3)

  • data_tris (np.ndarray) – data in tris, , (n_tri x 3)

  • nodes (np.ndarray) – nodes coordinates, (n_nodes, 3

  • method (str, default: 'nearest') – Which method to use for interpolation. Default uses NearestNDInterpolator

Returns

data_nodes – Data in nodes

Return type

np.ndarray

pynibs.util.util.compute_chunks(seq, num)

Splits up a sequence _seq_ into _num_ chunks of similar size. If len(seq) < num, (num-len(seq)) empty chunks are returned so that len(out) == num

Parameters
  • seq (list of something [N_ele]) – List containing data or indices, which is divided into chunks

  • num (int) – Number of chunks to generate

Returns

out – num sub-lists of seq with each of a similar number of elements (or empty).

Return type

list of num sublists

pynibs.util.util.differential_evolution(fobj, bounds, mut=0.8, crossp=0.7, popsize=20, its=1000, **kwargs)

Differential evolution optimization algorithm

Parameters
  • fobj (function object) – Function to optimize

  • bounds (dict) – Dictionary containing the bounds of the free variables to optimize

  • mut (float) – Mutation factor

  • crossp (float) – Cross population factor

  • popsize (int) – Population size

  • its (int) – Number of iterations

  • kwargs (dict) – Arguments passed to fobj (constants etc…)

Returns

  • best (dict) – Dictionary containing the best values

  • fitness (float) – Fitness value of best solution

pynibs.util.util.euler_angles_to_rotation_matrix(theta)

Determines the rotation matrix from the three Euler angles theta = [Psi, Theta, Phi] (in rad), which rotate the coordinate system in the order z, y’, x’’.

Parameters

theta (nparray [3]) – Euler angles in rad

Returns

r – Rotation matrix (z, y’, x’’)

Return type

nparray [3 x 3]

pynibs.util.util.find_nearest(array, value)

Given an “array”, and given a “value” , returns an index j such that “value” is between array[j] and array[j+1]. “array” must be monotonic increasing. j=-1 or j=len(array) is returned to indicate that “value” is out of range below and above respectively.

Parameters
  • array (nparray of float) – Monotonic increasing array

  • value (float) – Target value the nearest neighbor index in “array” is computed for

Returns

idx – Index j such that “value” is between array[j] and array[j+1]

Return type

int

pynibs.util.util.generalized_extreme_value_distribution(x, mu, sigma, k)

Generalized extreme value distribution

Parameters
  • x (ndarray of float [n_x]) – Events

  • mu (float) – Mean value

  • sigma (float) – Standard deviation

  • k (float) – Shape parameter

Returns

y – Probability density of events

Return type

ndarray of float [n_x]

pynibs.util.util.get_cartesian_product(array_list)

Generate a cartesian product of input arrays (all combinations).

cartesian_product = get_cartesian_product(array_list)

Parameters

array_list (list of 1D ndarray of float) – Arrays to compute the cartesian product with

Returns

cartesian_product – Array containing the cartesian products (all combinations of input vectors) (M, len(arrays))

Return type

ndarray of float

Examples

>>> import pygpc
>>> out = pygpc.get_cartesian_product(([1, 2, 3], [4, 5], [6, 7]))
>>> out
pynibs.util.util.get_indices_discontinuous_data(data, con, neighbor=False, deviation_factor=2, min_val=None, not_fitted_elms=None, crit='median', neigh_style='point')

Get element indices (and the best neighbor index), where the data is discontinuous

Parameters
  • data (ndarray of float [n_data]) – Data array to analyze given in the element center

  • con (ndarray of float [n_data, 3 or 4]) – Connectivity matrix

  • neighbor (boolean, optional, default=False) – Return also the element index of the “best” neighbor (w.r.t. median of data)

  • deviation_factor (float) – Allows data deviation from 1/deviation_factor < data[i]/median < deviation_factor

  • min_val (float, optional) – If given, only return elements which have a neighbor with data higher than min_val.

  • not_fitted_elms (ndarray) – If given, these elements are not used as neighbors

  • crit (str, default: median) – Criterium for best neighbor. Either median or max value

  • neigh_style (str, default: 'point') – Should neighbors share point or ‘edge’

Returns

  • idx_disc (list of int [n_disc]) – Index list containing the indices of the discontinuous elements

  • idx_neighbor (list of int [n_disc]) – Index list containing the indices of the “best” neighbors of the discontinuous elements

pynibs.util.util.get_sphere(mesh=None, mesh_fn=None, target=None, radius=None, roi_idx=None, roi=None, elmtype='tris')

Return element idx of elements within a certain distance to provided target. Elements might be ‘tris’ (default) or ‘tets’

If roi object / idx and mesh fn is provided, the roi is expected to have midlayer information and the roi geometry is used.

pynibs.util.util.in_hull(points, hull)

Test if points in points are in hull. points should be a [N x K] coordinates of N points in K dimensions. hull is either a scipy.spatial.Delaunay object or the [M x K] array of the coordinates of M points in Kdimensions for which Delaunay triangulation will be computed.

Parameters
  • points (nparray [N_points x 3]) – Set of floating point data to test whether they are lying inside the hull or not

  • hull (Delaunay instance or nparray [M x K]) – Surface data

Returns

inside – TRUE: point inside the hull FALSE: point outside the hull

Return type

boolean array

pynibs.util.util.invert(trans)

Invert rotation matrix.

Parameters

trans (nparray of float [3 x 3]) – Rotation matrix

Returns

rot_inv – Inverse rotation matrix

Return type

nparray of float [3 x 3]

pynibs.util.util.likelihood_posterior(x, y, fun, bounds=None, verbose=True, normalized_params=False, **params)

Determines the likelihood of the data following the function “fun” assuming a two variability source of the data pairs (x, y) using the posterior distribution.

Parameters
  • x (ndarray of float [n_points]) – x data

  • y (ndarray of float [n_points]) – y data

  • fun (function object) – Function object to fit the data to (e.g. sigmoid)

  • bounds (dict, optional, default: None) – Dictionary containing the bounds of “sigma_x” and “sigma_y” and the free parameters of fun

  • verbose (bool, optional, default: True) – Print function output after every calculation

  • normalized_params (bool, optional, default: False) – Are the parameters passed in normalized space between [0, 1]? If so, bounds are used to denormalize them before calculation

  • **params (dict) – Free parameters to optimize. Contains “sigma_x”, “sigma_y”, and the free parameters of fun

Returns

l – Negative likelihood

Return type

float

pynibs.util.util.list2dict(l)

Transform list of dicts with same keys to dict of list

Parameters

l (list of dict) – List containing dictionaries with same keys

Returns

d – Dictionary containing the entries in a list

Return type

dict of lists

pynibs.util.util.load_muaps(fn_muaps, fs=1000000.0, fs_downsample=100000.0)
pynibs.util.util.mutual_coherence(array)

Calculate the mutual coherence of a matrix A. It can also be referred as the cosine of the smallest angle between two columns.

mutual_coherence = mutual_coherence(array)

Parameters

array (ndarray of float) – Input matrix

Returns

mutual_coherence – Mutual coherence

Return type

float

pynibs.util.util.norm_percentile(data, percentile)

Normalizes data to a given percentile.

Parameters
  • data (nparray [n_data, ]) – Dataset to normalize

  • percentile (float) – Percentile of normalization value [0 … 100]

Returns

data_norm – Normalized dataset

Return type

nparray [n_data, ]

pynibs.util.util.normalize_rot(rot)

Normalize rotation matrix.

Parameters

rot (nparray of float [3 x 3]) – Rotation matrix

Returns

rot_norm – Normalized rotation matrix

Return type

nparray of float [3 x 3]

pynibs.util.util.quat_rotation_angle(q)

Computes the rotation angle from the quaternion in rad.

Parameters

q (nparray of float) – Quaternion, either only the imaginary part (length=3) [qx, qy, qz] or the full quaternion (length=4) [qw, qx, qy, qz]

Returns

alpha – Rotation angle of quaternion in rad

Return type

float

pynibs.util.util.quat_to_rot(q)

Computes the rotation matrix from quaternions.

Parameters

q (nparray of float) – Quaternion, either only the imaginary part (length=3) or the full quaternion (length=4)

Returns

rot – Rotation matrix, containing the x, y, z axis in the columns

Return type

nparray of float [3 x 3]

pynibs.util.util.quaternion_conjugate(q)

https://stackoverflow.com/questions/15425313/inverse-quaternion

Parameters

q

Returns

Return type

pynibs.util.util.quaternion_diff(q1, q2)

https://math.stackexchange.com/questions/2581668/ error-measure-between-two-rotations-when-one-matrix-might-not-be-a-valid-rotatio

Parameters
  • q1

  • q2

Returns

Return type

pynibs.util.util.quaternion_inverse(q)

https://stackoverflow.com/questions/15425313/inverse-quaternion

Parameters

q

Returns

Return type

pynibs.util.util.rd(array, array_ref)

Determine the relative difference between input data and reference data.

Parameters
  • array (np.ndarray) – input data [ (x), y0, y1, y2 … ]

  • array_ref (np.ndarray) – reference data [ (x_ref), y0_ref, y1_ref, y2_ref … ] if array_ref is 1D, all sizes have to match

Returns

rd – Relative difference between the columns of array and array_ref

Return type

ndarray of float [array.shape[1]]

pynibs.util.util.recursive_len(item)

Determine len of list of list (recursively).

Parameters

item (list of list) – List of list

Returns

len – Total length of list of list

Return type

int

pynibs.util.util.rot_to_quat(rot)

Computes the quaternions from rotation matrix. (see e.g. http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/)

Parameters

rot (nparray of float [3 x 3]) – Rotation matrix, containing the x, y, z axis in the columns

Returns

q – Quaternion, full (length=4)

Return type

nparray of float

pynibs.util.util.rotation_matrix_to_euler_angles(r)

Calculates the euler angles theta = [Psi, Theta, Phi] (in rad) from the rotation matrix R which, rotate the coordinate system in the order z, y’, x’’. (https://www.learnopencv.com/rotation-matrix-to-euler-angles/)

Parameters

M (np.array [3 x 3]) – Rotation matrix (z, y’, x’’)

Returns

theta – Euler angles in rad

Return type

np.array [3]

pynibs.util.util.sample_sphere(n_points, r)

Creates n_points evenly spread in a sphere of radius r.

Parameters
  • n_points (int) – Number of points to be spread, must be odd

  • r (float) – Radius of sphere

Returns

points – Evenly spread points in a unit sphere

Return type

ndarray of float [N x 3]

pynibs.util.util.sigmoid_log_p(x, p)
pynibs.util.util.tets_in_sphere(mesh, target, radius, roi)

Worker function for get_sphere()

pynibs.util.util.tris_in_sphere(mesh, target, radius, roi)

Worker function for get_sphere()

pynibs.util.util.unique_rows(a)

Returns the unique rows of np.array(a).

Parameters

a (nparray of float [m x n]) – Array to search for double row entries

Returns

a_unique – array a with only unique rows

Return type

np.array [k x n]

Module contents

Submodules

pynibs.coil module

pynibs.coil.calc_coil_position_pdf(fn_rescon=None, fn_simpos=None, fn_exp=None, orientation='quaternions', folder_pdfplots=None)

Determines the probability density functions of the transformed coil position (x’, y’, z’) and quaternions of the coil orientations (x’’, y’’, z’’)

Parameters
  • fn_rescon (str) – Filename of the results file from TMS experiments (results_conditions.csv)

  • fn_simpos (str) – Filename of the positions and orientation from TMS experiments (simPos.csv)

  • fn_exp (str) – Filename of experimental.csv file from experiments

  • orientation (str) – Type of orientation estimation: ‘quaternions’ or ‘euler’

  • folder_pdfplots (str) – Folder, where the plots of the fitted pdfs are saved (omitted if not provided)

Returns

  • pdf_paras_location (list of list of np.arrays [n_conditions]) –

    Pdf parameters (limits and shape) of the coil position for x’, y’, and z’ for each:

    • beta_paras … [p, q, a, b] (2 shape parameters and limits)

    • moments … [data_mean, data_std, beta_mean, beta_std]

    • p_value … p-value of the Kolmogorov Smirnov test

    • uni_paras … [a, b] (limits)

  • pdf_paras_orientation_euler (list of np.array [n_conditions]) –

    Pdf parameters (limits and shape) of the coil orientation Psi, Theta, and Phi for each:

    • beta_paras … [p, q, a, b] (2 shape parameters and limits)

    • moments … [data_mean, data_std, beta_mean, beta_std]

    • p_value … p-value of the Kolmogorov Smirnov test

    • uni_paras … [a, b] (limits)

  • OP_mean (List of [3 x 4] np.array [n_conditions]) – List of mean coil position and orientation for different conditions (global coordinate system)

    \begin{bmatrix}
|  &   |   &   |   &  |   \\
ori_x & ori_y & ori_z & pos  \\
|  &   |   &   |   &  |   \\
\end{bmatrix}

  • OP_zeromean (list of [3 x 4 x n_con_each] np.arrays [n_conditions]) – List over conditions containing zero-mean coil orientations and positions

  • V (list of [3 x 3] np.arrays [n_conditions]) – Transformation matrix of coil positions from global coordinate system to transformed coordinate system

  • P_transform (list of np.array [n_conditions]) – List over conditions containing transformed coil positions [x’, y’, z’] of all stimulations (zero-mean, rotated by SVD)

  • quaternions (list of np.array [n_conditions]) – List over conditions containing imaginary part of quaternions [x’’, y’’, z’’] of all stimulations

pynibs.coil.calc_coil_transformation_matrix(LOC_mean, ORI_mean, LOC_var, ORI_var, V)

Calculate the modified coil transformation matrix needed for simnibs based on location and orientation variations observed in the framework of uncertainty analysis

Parameters
  • LOC_mean (ndarray of float [3]) – Mean location of TMS coil

  • ORI_mean (ndarray of float [3 x 3]) –

    Mean orientations of TMS coil

    \begin{bmatrix}
| & | & | \\
x & y & z \\
| & | & | \\
\end{bmatrix}

  • LOC_var (nparray of float [3]) – Location variation in normalized space (dx’, dy’, dz’), i.e. zero mean and projected on principal axes

  • ORI_var (nparray of float [3]) – Orientation variation expressed in Euler angles [alpha, beta, gamma] in deg

  • V (nparray of float [3x3]) – V-matrix containing the eigenvectors from _,_,V = numpy.linalg.svd

Returns

mat – Transformation matrix containing 3 axis and 1 location vector:

\begin{bmatrix}
| & | & | &  |   \\
x & y & z & pos  \\
| & | & | &  |   \\
0 & 0 & 0 &  1   \\
\end{bmatrix}

Return type

nparray of float [4 x 4]

pynibs.coil.check_coil_position(points, hull)

Check if magnetic dipoles are lying inside head region

Parameters
  • points (ndarray of float [N_points x 3]) – Coordinates (x,y,z) of magnetic dipoles

  • hull (Delaunay object or np.array of float [N_surface_points x 3]) – Head surface data

Returns

valid – Validity of coil position TRUE: valid FALSE: unvalid

Return type

bool

pynibs.coil.create_stimsite_from_exp_hdf5(fn_exp, fn_hdf, datanames=None, data=None, overwrite=False)

This takes an experiment.hdf5 file and creates an .hdf5 + .xdmf tuple for all coil positions for visualization.

Parameters
  • fn_exp (str) – Path to experiment.hdf5

  • fn_hdf (basestring) – Filename for the resulting .hdf5 file. The .xdmf is saved with the same basename. Folder should already exist.

  • datanames (basestring or list of basestring) – Dataset names for _data_. Default: None.

  • data (np.ndarray) – Dataset array with (len(poslist.pos), len(datanames()). Default: None.

  • overwrite (boolean) – Overwrite existing files. Default: False.

pynibs.coil.create_stimsite_from_list(fn_hdf, poslist, datanames=None, data=None, overwrite=False)

This takes a TMSLIST from simnibs and creates a .hdf5 + .xdmf tuple for all positions.

Centers and coil orientations are written so disk.

Parameters
  • fn_hdf (basestring) – Filename for the .hdf5 file. The .xdmf is saved with the same basename. Folder should already exist.

  • datanames (basestring or list of basestring) – Dataset names for _data_. Default: None.

  • data (np.ndarray) – Dataset array with (len(poslist.pos), len(datanames()). Default: None.

  • poslist (TMSLIST object (simnibs.simulation.simstruct.TMSLIST)) – poslist.pos[*].matsimnibs have to be set.

  • overwrite (boolean) – Overwrite existing files. Default: False.

pynibs.coil.create_stimsite_from_matsimnibs(fn_hdf, matsimnibs, datanames=None, data=None, overwrite=False)

This takes a matsimnibs array and creates an .hdf5 + .xdmf tuple for all coil positions for visualization.

Centers and coil orientations are written disk.

Parameters
  • fn_hdf (basestring) – Filename for the .hdf5 file. The .xdmf is saved with the same basename. Folder should already exist.

  • matsimnibs (ndarray [4 x 4 x n_pos]) – Matsimnibs matrices containing the coil orientation (x,y,z) and position (p) [ | | | | ] [ x y z p ] [ | | | | ] [ 0 0 0 1 ]

  • datanames (basestring or list of basestring) – Dataset names for _data_. Default: None.

  • data (np.ndarray) – Dataset array with (len(poslist.pos), len(datanames()). Default: None.

  • overwrite (boolean) – Overwrite existing files. Default: False.

pynibs.coil.create_stimsite_from_tmslist(fn_hdf, poslist, datanames=None, data=None, overwrite=False)

This takes a TMSLIST from simnibs and creates a .hdf5 + .xdmf tuple for all positions.

Centers and coil orientations are written so disk.

Parameters
  • fn_hdf (basestring) – Filename for the .hdf5 file. The .xdmf is saved with the same basename. Folder should already exist.

  • datanames (basestring or list of basestring) – Dataset names for _data_. Default: None.

  • data (np.ndarray) – Dataset array with (len(poslist.pos), len(datanames()). Default: None.

  • poslist (TMSLIST object (simnibs.simulation.simstruct.TMSLIST)) – poslist.pos[*].matsimnibs have to be set.

  • overwrite (boolean) – Overwrite existing files. Default: False.

pynibs.coil.create_stimsite_hdf5(fn_exp, fn_hdf, conditions_selected=None, sep='_', merge_sites=False, fix_angles=False, data_dict=None, conditions_ignored=None)

Reads results_conditions and creates an hdf5/xdmf pair with condition-wise centers of stimulation sites and coil directions as data.

Parameters
  • fn_exp (str) – Path to results.csv

  • fn_hdf (str) – Path where to write file. Gets overridden if already existing

  • conditions_selected (str or list of str, Default=None) – List of conditions returned by the function, the others are omitted, If None, all conditions are returned

  • sep (str, Default: "_") – Separator between condition label and angle (e.g. M1_0, or M1-0)

  • merge_sites (boolean) – If true, only one coil center per site is generated.

  • fix_angles (boolean) – rename 22.5 -> 0, 0 -> -45, 67.5 -> 90, 90 -> 135

  • data_dict (dict of ndarray of float [n_stimsites] (optional), default: None) – Dictionary containing data corresponding to the stimulation sites (keys)

  • conditions_ignored (str or list of str, Default=None) – Conditions, which are not going to be included in the plot

Returns

<Files> – Contains information about condition-wise stimulation sites and coil directions (fn_hdf)

Return type

hdf5/xdmf file pair

Example

Example::
pynibs.create_stimsite_hdf5(‘/data/pt_01756/probands/15484.08/exp/1/experiment_corrected.csv’,

‘/data/pt_01756/tmp/test’, True, True)

pynibs.coil.get_coil_dipole_pos(coil_fn, matsimnibs)

Apply transformation to coil dipoles and return position.

Parameters
  • coil_fn (str) – Filename of coil .ccd file

  • matsimnibs (ndarray of float) – Transformation matrix

Returns

dipoles_pos – Cartesian coordinates (x, y, z) of coil magnetic dipoles

Return type

nparray [N x 3]

pynibs.coil.get_invalid_coil_parameters(param_dict, coil_position_mean, svd_v, del_obj, fn_coil, fn_hdf5_coilpos=None)

Finds gpc parameter combinations, which place coil dipoles inside subjects head. Only endpoints (and midpoints) of the parameter ranges are examined.

get_invalid_coil_parameters(param_dict, pos_mean, v, del_obj, fn_coil, fn_hdf5_coilpos=None)

pynibs.coil.sort_opt_coil_positions(fn_coil_pos_opt, fn_coil_pos, fn_out_hdf5=None, root_path='/0/0/', verbose=False, print_output=False)

Sorts coil positions according to Traveling Salesman problem

Parameters
  • fn_coil_pos_opt (str) – Name of .hdf5 file containing the optimal coil position indices

  • fn_coil_pos (str) – Name of .hdf5 file containing the matsimnibs matrices of all coil positions

  • fn_out_hdf5 (str) – Name of output .hdf5 file (will be saved in the same format as fn_coil_pos_opt)

  • verbose (bool, optional, default: False) – Print output messages

  • print_output (bool or str, optional, default: False) – Print output image as .png file showing optimal path

Returns

Return type

<file> .hdf5 file containing the sorted optimal coil position indices

pynibs.coil.test_coil_position_gpc(parameters)

Testing valid coil positions for gPC analysis

pynibs.coil.write_coil_pos_hdf5(fn_hdf, centers, m0, m1, m2, datanames=None, data=None, overwrite=False)

Creates a .hdf5 + .xdmf file for all coil positions.

Centers and coil orientations are written to disk.

Parameters
  • fn_hdf (basestring) – Filename for the .hdf5 file. The .xdmf is saved with the same basename. Folder should already exist.

  • centers (ndarray of float [n_pos x 3]) – Coil positions

  • m0 (ndarray of float [n_pos x 3]) – Coil orientation x-axis (looking at the active (patient) side of the coil pointing to the right)

  • m1 (ndarray of float [n_pos x 3]) – Coil orientation y-axis (looking at the active (patient) side of the coil pointing up away from the handle)

  • m2 (ndarray of float [n_pos x 3]) – Coil orientation z-axis (looking at the active (patient) side of the coil pointing to the patient)

  • datanames (basestring or list of basestring [n_data]) – Dataset names for _data_. Default: None.

  • data (np.ndarray [n_pos, n_data]) – Dataset array with (len(poslist.pos), len(datanames()). Default: None.

  • overwrite (boolean) – Overwrite existing files. Default: False.

pynibs.freesurfer module

pynibs.freesurfer.data_sub2avg(fn_subject_obj, fn_average_obj, hemisphere, fn_in_hdf5_data, data_hdf5_path, data_label, fn_out_hdf5_geo, fn_out_hdf5_data, mesh_idx=0, roi_idx=0, subject_data_in_center=True, data_substitute=- 1, verbose=True, replace=True, reg_fn='sphere.reg')

Maps the data from the subject space to the average template. If the data is given only in an ROI, the data is mapped to the whole brain surface.

Parameters
  • fn_subject_obj (str) – Filename of subject object .pkl file (incl. path) (e.g.: …/probands/subjectID/subjectID.pkl)

  • fn_average_obj (str) – Filename of average template object .pkl file (incl. path) (e.g.: …/probands/avg_template/avg_template.pkl)

  • hemisphere (str) – Define hemisphere to work on (‘lh’ or ‘rh’ for left or right hemisphere, respectively)

  • fn_in_hdf5_data (str) – Filename of .hdf5 data input file containing the subject data

  • data_hdf5_path (str) – Path in .hdf5 data file where data is stored (e.g. ‘/data/tris/’)

  • data_label (str or list of str) – Label of datasets contained in hdf5 input file to map

  • fn_out_hdf5_geo (str) – Filename of .hdf5 geo output file containing the geometry information

  • fn_out_hdf5_data (str) – Filename of .hdf5 data output file containing the mapped data

  • mesh_idx (int) – Index of mesh used in the simulations

  • roi_idx (int) – Index of region of interest used in the simulations

  • subject_data_in_center (boolean) – Specify if the data is given in the center of the triangles or in the nodes (Default = True)

  • data_substitute (float) – Data substitute with this number for all points outside the ROI mask

  • verbose (boolean) – Verbose output (Default: True)

  • replace (boolean) – Replace output files (Default: True)

  • reg_fn (string) – Sphere.reg fn

Returns

<Files> – Geometry and corresponding data files to plot with Paraview:

  • fn_out_hdf5_geo.hdf5: geometry file containing the geometry information of the average template

  • fn_out_hdf5_data.hdf5: geometry file containing the data

Return type

.hdf5 files

pynibs.freesurfer.make_average_subject(subjects, subject_dir, average_dir, fn_reg='sphere.reg')

Generates the average template from a list of subjects using the freesurfer average.

Parameters
  • subjects (list of str) – paths of subjects directories, where the freesurfer files are located (e.g.: for simnibs mri2mesh …/fs_SUBJECT_ID)

  • subject_dir (str) – temporary subject directory of freesurfer (symlinks of subjects will be generated in there and average template will be temporarily stored before it is copied to average_dir)

  • average_dir (str) – path to directory where average template will be stored (e.g.: probands/avg_template_15/mesh/0/fs_avg_template_15

  • fn_reg (str <Default: sphere.reg --> ?h.sphere.reg>) – Filename suffix of freesurfer registration file containing registration information to template

Returns

<Files> – Average template in average_dir and registered curvature files, ?h.sphere.reg in subjects/surf folders

Return type

.tif and .reg files

pynibs.freesurfer.make_group_average(subjects=None, subject_dir=None, average=None, hemi='lh', template='mytemplate', steps=3, n_cpu=2, average_dir=None)

Creates a group average from scratch, based on one subject. This prevents for example the fsaverage problems of large elements at M1, etc.

Parameters
  • subjects (list of str) – List of freesurfer subjects names

  • subject_dir (str) – temporary subject directory of freesurfer (symlinks of subjects will be generated in there and average template will be temporarily stored before it is copied to average_dir)

  • average (string (Optional)) – Which subject to base new average template on? Default: subjects[0]

  • hemi (string (Optional)) – lh or rh

  • template (string <Default: mytemplate>) – Basename of new template

  • steps (int <Default: 2>) – Number of iterations

  • n_cpu (int <Default: 4>) – How many cores for multithreading?

  • average_dir (str) – Path to directory where average template will be stored (e.g.: probands/avg_template_15/mesh/0/fs_avg_template_15)

Returns

  • <File> (.tif file) – SUBJECT_DIR/TEMPLATE*.tif, TEMPLATE0.tif based on AVERAGE, rest on all subjects

  • <File> (.myreg file) – SUBJECT_DIR/SUBJECT*/surf/HEMI.sphere.myreg*

  • <File> (.tif file) – Subject wise sphere registration based on TEMPLATE*.tif

pynibs.freesurfer.read_curv_data(fname_curv, fname_inf, raw=False)

Read curvature data provided by freesurfer and optionally process it.

Parameters
  • fname_curv (str) – Filename of the freesurfer curvature file (e.g. ?h.curv), contains curvature data in nodes can be found in mri2mesh proband folder: /proband_ID/fs_ID/surf/?h.curv

  • fname_inf (str) – Filename of inflated brain surface (e.g. ?h.inflated), contains points and connectivity data of surface can be found in mri2mesh proband folder: /proband_ID/fs_ID/surf/?h.inflated

  • raw (boolean) – Decide if raw-data is returned or if the data is normalized to -1 for neg. and +1 for pos. curvature

Returns

curv – Curvature data in element centers

Return type

nparray of float or int

pynibs.hdf5_io module

pynibs.hdf5_io.create_position_path_xdmf(sorted_fn, coil_pos_fn, output_xdmf, stim_intens=None, coil_sorted='/0/0/coil_seq')

Creates one .xdmf file that allows paraview plottings of coil position paths.

Parameters
  • sorted_fn (str) – .hdf5 filename with position indices, values, intensities from pynibs.sort_opt_coil_positions()

  • coil_pos_fn (str) – .hdf5 filename with original set of coil positions. Indices from sorted_fn are mapped to this. Either ‘/matsimnibs’ or ‘m1’ and ‘m2’ datasets.

  • output_xdmf (str) –

  • stim_intens (int, optional) – Intensities are multiplied by this factor

Returns

output_xdmf

Return type

<file>

Other Parameters

coil_sorted (str) – Path to coil positions in sorted_fn

pynibs.hdf5_io.hdf_2_ascii(hdf5_fn)

Prints out structure of given .hdf5 file.

Parameters

hdf5_fn (str) – Filename of .hdf5 file.

Returns

h5 – Structure of .hdf5 file

Return type

items

pynibs.hdf5_io.load_mesh_hdf5(fname)

Loading mesh from .hdf5 file and setting up TetrahedraLinear class.

Parameters

fname (str) – Name of .hdf5 file (incl. path)

Returns

obj – Instance of TetrahedraLinear class

Return type

pyfempp.TetrahedraLinear

Example

hdf5 file format and contained groups. The content of .hdf5 files can be shown using the tool HDFView (https://support.hdfgroup.org/products/java/hdfview/)

mesh
I---/elm
I    I--/elm_number          [1,2,3,...,N_ele]           Running index over all elements starting at 1,
                                                            triangles and tetrahedra
I    I--/elm_type            [2,2,2,...,4,4]             Element type: 2 triangles, 4 tetrahedra
I    I--/node_number_list    [1,5,6,0;... ;1,4,8,9]      Connectivity of triangles [X, X, X, 0] and tetrahedra
                                                                    [X, X, X, X]
I    I--/tag1                [1001,1001, ..., 4,4,4]     Surface (100X) and domain (X) indices with 1000 offset
                                                                     for surfaces
I    I--/tag2                [   1,   1, ..., 4,4,4]     Surface (X) and domain (X) indices w/o offset
I
I---/nodes
I    I--/node_coord          [1.254, 1.762, 1.875;...]   Node coordinates in (mm)
I    I--/node_number         [1,2,3,...,N_nodes]         Running index over all points starting at 1
I    I--/units               ["mm"]                      .value is unit of geometry
I
I---/fields
I    I--/E/value             [E_x_1, E_y_1, E_z_1;...]   Electric field in all elms, triangles and tetrahedra
I    I--/J/value             [J_x_1, J_y_1, J_z_1;...]   Current density in all elms, triangles and tetrahedra
I    I--/normE/value         [normE_1,..., normE_N_ele]  Magnitude of electric field in all elements,
                                                                    triangles and tetrahedra
I    I--/normJ/value         [normJ_1,..., normJ_N_ele]  Magnitude of current density in all elements,
                                                                    triangles and tetrahedra

/data
I---/potential               [phi_1, ..., phi_N_nodes]   Scalar electric potential in nodes (size N_nodes)
I---/dAdt                    [A_x_1, A_y_1, A_z_1,...]   Magnetic vector potential (size 3xN_nodes)
pynibs.hdf5_io.load_mesh_msh(fname)

Loading mesh from .msh file and return object instance of TetrahedraLinear class.

Parameters

fname (str) – Name of .msh file (incl. path)

Returns

obj

Return type

pyfempp.TetrahedraLinear

pynibs.hdf5_io.msh2hdf5(fn_msh=None, skip_roi=False, include_data=False, approach='mri2mesh', subject=None, mesh_idx=None)

Transforms mesh from .msh to .hdf5 format. Mesh is read from subject object or from fn_msh.

Parameters
  • fn_msh (str, optional, default: None) – Filename of .msh file

  • skip_roi (bool, optional, default: False) – Skip generating ROI in .hdf5

  • include_data (bool, optional, default: False) – Also convert data in .msh file to .hdf5 file

  • subject (Subject object, optional, default: None) – Subject object

  • mesh_idx (int or list of int, optional, default: None) – Mesh index, the conversion from .msh to .hdf5 is conducted for

  • parameters (Depreciated) –

  • ----------------------

  • approach (str) – Approach the headmodel was created with (“mri2mesh” or “headreco”)

Returns

<File> – .hdf5 file with mesh information

Return type

.hdf5 file

pynibs.hdf5_io.print_attrs(name, obj)

Helper function for hdf_2_ascii. To be called from h5py.Group.visititems()

Parameters
  • name (str) – Name of structural element

  • obj (object) – Object of structural element

Returns

<Print>

Return type

Structure of .hdf5 file

pynibs.hdf5_io.read_arr_from_hdf5(fn_hdf5, folder)

Read array and transform to list: strings saved as np.bytes_ to str and ‘None’ to None

fn_hdf5: str

Filename of .hdf5 file

folder: str

Folder inside .hdf5 file to read

Returns

l – List containing data from .hdf5 file

Return type

list

pynibs.hdf5_io.read_data_hdf5(fname)

Reads phi and dA/dt data from .hdf5 file (phi and dAdt are given in the nodes!).

Parameters

fname (str) – Filename of .hdf5 data file

Returns

  • phi (nparray of float [N_nodes]) – Electric potential in the nodes of the mesh

  • da_dt (nparray of float [N_nodesx3]) – Magnetic vector potential in the nodes of the mesh

pynibs.hdf5_io.read_dict_from_hdf5(fn_hdf5, folder)

Read all arrays from from hdf5 file and return them as dict

Parameters
  • fn_hdf5 (str) – Filename of .hdf5 file

  • folder (str) – Folder inside .hdf5 file to read

Returns

d – Dictionary from .hdf5 file folder

Return type

dict

pynibs.hdf5_io.simnibs_results_msh2hdf5(fn_msh, fn_hdf5, S, pos_tms_idx, pos_local_idx, subject, mesh_idx, mode_xdmf='r+', n_cpu=4, verbose=False, overwrite=False, mid2roi=False)

Converts simnibs .msh results file(s) to .hdf5 / .xdmf tuple.

Parameters
  • fn_msh (str list of str) – Filenames (incl. path) of .msh results files from simnibs

  • fn_hdf5 (str or list of str) – Filenames (incl. path) of .hdf5 results files

  • S (Simnibs Session object) – Simnibs Session object the simulations are conducted with

  • pos_tms_idx (list of int) – Index of the simulation w.r.t. to the simnibs TMSList (inside Session object S) For every coil a separate TMSList exists, which contains multiple coil positions.

  • pos_local_idx (list of int) – Index of the simulation w.r.t. to the simnibs POSlist in the TMSList (inside Session object S) For every coil a separate TMSList exists, which contains multiple coil positions.

  • subject (Subject object) – Subject object loaded from .pkl file

  • mesh_idx (int) – Mesh index

  • mode_xdmf (str, optional, default: "r+") – Mode to open hdf5_geo file to write xdmf. If hdf5_geo is already separated in tets and tris etc, the file is not changed, use “r” to avoid IOErrors in case of parallel computing.

  • n_cpu (int) – Number of processes

  • verbose (bool, optional, default: False) – Print output messages

  • overwrite (bool, optional, default: False) – Overwrite .hdf5 file if existing

  • mid2roi (bool or string, optional, default: False) – If the mesh contains ROIs and the e-field was calculated in the midlayer using simnibs (S.map_to_surf = True), the midlayer results will be mapped from the simnibs midlayer to the ROIs (takes some time for large ROIs)

Returns

<File> – .hdf5 file containing the results. An .xdmf file is also created to link the results with the mesh .hdf5 file of the subject

Return type

.hdf5 file

pynibs.hdf5_io.simnibs_results_msh2hdf5_workhorse(fn_msh, fn_hdf5, S, pos_tms_idx, pos_local_idx, subject, mesh_idx, mode_xdmf='r+', verbose=False, overwrite=False, mid2roi=False)

Converts simnibs .msh results file to .hdf5 (including midlayer data if desired)

Parameters
  • fn_msh (list of str) – Filenames (incl. path) of .msh results files from simnibs

  • fn_hdf5 (str or list of str) – Filenames (incl. path) of .hdf5 results files

  • S (Simnibs Session object) – Simnibs Session object the simulations are conducted with

  • pos_tms_idx (list of int) – Index of the simulation w.r.t. to the simnibs TMSList (inside Session object S) For every coil a separate TMSList exists, which contains multiple coil positions.

  • pos_local_idx (list of int) – Index of the simulation w.r.t. to the simnibs POSlist in the TMSList (inside Session object S) For every coil a separate TMSList exists, which contains multiple coil positions.

  • subject (Subject object) – Subject object loaded from .pkl file

  • mesh_idx (int) – Mesh index

  • mode_xdmf (str, optional, default: "r+") – Mode to open hdf5_geo file to write xdmf. If hdf5_geo is already separated in tets and tris etc, the file is not changed, use “r” to avoid IOErrors in case of parallel computing.

  • verbose (bool, optional, default: False) – Print output messages

  • overwrite (bool, optional, default: False) – Overwrite .hdf5 file if existing

  • mid2roi (bool, list of string, or string, optional, default:False) – If the mesh contains ROIs and the e-field was calculated in the midlayer using simnibs (S.map_to_surf = True), the midlayer results will be mapped from the simnibs midlayer to the ROIs (takes some time for large ROIs)

Returns

<File> – .hdf5 file containing the results. An .xdmf file is also created to link the results with the mesh .hdf5 file of the subject

Return type

.hdf5 file

pynibs.hdf5_io.split_hdf5(hdf5_in_fn, hdf5_geo_out_fn='', hdf5_data_out_fn=None)

Splits one hdf5 into one with spatial data and one with statistical data. If coil data is present in hdf5_in, it is saved in hdf5Data_out. If new spatial data is added to file (curve, inflated, whatever), add this to the geogroups variable.

Parameters
  • hdf5_in_fn (str) – Filename of .hdf5 input file

  • hdf5_geo_out_fn (str) – Filename of .hdf5 .geo output file

  • hdf5_data_out_fn (str) – Filename of .hdf5 .data output file (If none, remove data from hdf5_in)

Returns

  • <File> (.hdf5 file) – hdf5Geo_out_fn (spatial data)

  • <File> (.hdf5 file) – hdf5Data_out_fn (data)

pynibs.hdf5_io.write_arr_to_hdf5(fn_hdf5, arr_name, data, overwrite_arr=True, verbose=False, check_file_exist=False)

Takes an array and adds it to an hdf5 file

If data is list of dict, write_dict_to_hdf5() is called for each dict with adapted hdf5-folder name Otherwise, data is casted to np.ndarray and dtype of unicode data casted to ‘|S’.

pynibs.hdf5_io.write_data_hdf5(out_fn, data, data_names, hdf5_path='/data', mode='a')

Creates a .hdf5 file with data.

Parameters
  • out_fn (str) – Filename of output .hdf5 file containing the geometry information

  • data (nparray or list of nparrays of float) – Data to save in hdf5 data file

  • data_names (str or list of str) – Labels of data

  • hdf5_path (str) – Folder in .hdf5 geometry file, where the data is saved in (Default: /data)

  • mode (str, optional, default: "a") – Mode: “a” append, “w” write (overwrite)

Returns

<File> – File containing the stored data

Return type

.hdf5 file

Example

File structure of .hdf5 data file

data
|---/data_names[0]          [data[0]]           First dataset
|---/    ...                   ...                  ...
|---/data_names[N-1]        [data[N-1]]         Last dataset
pynibs.hdf5_io.write_data_hdf5_surf(data, data_names, data_hdf_fn_out, geo_hdf_fn, replace=False, replace_array_in_file=True)

Saves surface data to .hdf5 data file and generates corresponding .xdmf file linking both. The directory of data_hdf_fn_out and geo_hdf_fn should be the same, as only basenames of files are stored in the .xdmf file.

Parameters
  • data (ndarray or list [N_points_ROI x N_components]) – Data to map on surfaces

  • data_names (str or list) – Names for datasets

  • data_hdf_fn_out (str) – Filename of .hdf5 data file

  • geo_hdf_fn (str) – Filename of .hdf5 geo file containing the geometry information (has to exist)

  • replace (boolean, optional, default: False) – Replace existing .hdf5 and .xdmf file completely

  • replace_array_in_file (boolean, optional, default: True) – Replace existing array in file

Returns

  • <File> (.hdf5 file) – data_hdf_fn_out.hdf5 containing data

  • <File> (.xdmf file) – data_hdf_fn_out.xdmf containing information about .hdf5 file structure for Paraview

Example

File structure of .hdf5 data file

/data
|---/tris
|      |---dataset_0    [dataset_0]    (size: N_dataset_0 x M_dataset_0
|      |---   ...
|      |---dataset_K   [dataset_K]     (size: N_dataset_K x M_dataset_K)
pynibs.hdf5_io.write_dict_to_hdf5(fn_hdf5, data, folder, check_file_exist=False, verbose=False)

Takes dict (from subject.py) and passes its keys to write_arr_to_hdf5()

fn_hdf5:folder/

|–key1 |–key2 |

Parameters
  • fn_hdf5 (str) –

  • data (dict | pyfempp.Mesh) –

  • folder (str) –

  • verbose (bool) –

  • check_file_exist (bool) –

pynibs.hdf5_io.write_geo_hdf5(out_fn, msh, roi_dict=None, hdf5_path='/mesh')

Creates a .hdf5 file with geometry data from mesh including region of interest(s).

Parameters
  • out_fn (str) – Filename of output .hdf5 file containing the geometry information

  • msh (TetrahedraLinear object instance) – Mesh of TetrahedraLinear class

  • roi_dict (dict of RegionOfInterestSurface and/or RegionOfInterestVolume object instance(s)) – Region of interest (surface and/or volume) class instance

  • hdf5_path (str) – Folder in .hdf5 geometry file, where the mesh information are saved in (Default: /mesh)

Returns

<File> – File containing the geometry information

Return type

.hdf5 file

Example

File structure of .hdf5 geometry file

mesh
I---/elm
I    I--/elm_number             [1,2,3,...,N_ele]        Running index over all elements starting at 1
                                                            (triangles and tetrahedra)
I    I--/elm_type               [2,2,2,...,4,4]          Element type: 2 triangles, 4 tetrahedra
I    I--/tag1                [1001,1001, ..., 4,4,4]     Surface (100X) and domain (X) indices with 1000
                                                                    offset for surfaces
I    I--/tag2                [   1,   1, ..., 4,4,4]     Surface (X) and domain (X) indices w/o offset
I    I--/triangle_number_list   [1,5,6;... ;1,4,8]       Connectivity of triangles [X, X, X]
I    I--/tri_tissue_type        [1,1, ..., 3,3,3]        Surface indices to differentiate between surfaces
I    I--/tetrahedra_number_list [1,5,6,7;... ;1,4,8,12]  Connectivity of tetrahedra [X, X, X, X]
I    I--/tet_tissue_type        [1,1, ..., 3,3,3]        Volume indices to differentiate between volumes
I    I--/node_number_list       [1,5,6,0;... ;1,4,8,9]   Connectivity of triangles [X, X, X, 0] and
                                                            tetrahedra [X, X, X, X]
I
I---/nodes
I    I--/node_coord          [1.254, 1.762, 1.875;...]   Node coordinates in (mm)
I    I--/node_number         [1,2,3,...,N_nodes]         Running index over all points starting at 1
I    I--/units               ['mm']                      .value is unit of geometry

roi_surface
I---/0                                                           Region of Interest number
I    I--/node_coord_up              [1.254, 1.762, 1.875;...]    Coordinates of upper surface points
I    I--/node_coord_mid             [1.254, 1.762, 1.875;...]    Coordinates of middle surface points
I    I--/node_coord_low             [1.254, 1.762, 1.875;...]    Coordinates of lower surface points
I    I--/tri_center_coord_up        [1.254, 1.762, 1.875;...]    Coordinates of upper triangle centers
I    I--/tri_center_coord_mid       [1.254, 1.762, 1.875;...]    Coordinates of middle triangle centers
I    I--/tri_center_coord_low       [1.254, 1.762, 1.875;...]    Coordinates of lower triangle centers
I    I--/node_number_list           [1,5,6,0;... ;1,4,8,9]       Connectivity of triangles [X, X, X]
I    I--/delta                      0.5                          Distance parameter between GM and WM surface
I    I--/tet_idx_tri_center_up      [183, 913, 56, ...]          Tetrahedra indices where triangle center of
                                                                    upper surface are lying in
I    I--/tet_idx_tri_center_mid     [185, 911, 58, ...]          Tetrahedra indices where triangle center of
                                                                    middle surface are lying in
I    I--/tet_idx_tri_center_low     [191, 912, 59, ...]          Tetrahedra indices where triangle center of
                                                                    lower surface are lying in
I    I--/tet_idx_node_coord_mid     [12, 15, 43, ...]            Tetrahedra indices where the node_coords_mid
                                                                    are lying in
I    I--/gm_surf_fname              .../surf/lh.pial             Filename of GM surface from segmentation
I    I--/wm_surf_fname              .../surf/lh.white            Filename of WM surface from segmentation
I    I--/layer                      3                            Number of layers
I    I--/fn_mask                    .../simnibs/mask.mgh         Filename of region of interest mask
I    I--/X_ROI                      [-10, 15]                    X limits of region of interest box
I    I--/Y_ROI                      [-10, 15]                    Y limits of region of interest box
I    I--/Z_ROI                      [-10, 15]                    Z limits of region of interest box
I
I---/1
I    I ...

roi_volume
I---/0                                                           Region of Interest number
I    I--/node_coord                 [1.254, 1.762, 1.875;...]    Coordinates (x,y,z) of ROI nodes
I    I--/tet_node_number_list       [1,5,6,7;... ;1,4,8,9]       Connectivity matrix of ROI tetrahedra
I    I--/tri_node_number_list       [1,5,6;... ;1,4,8]           Connectivity matrix of ROI triangles
I    I--/tet_idx_node_coord         [183, 913, 56, ...]          Tetrahedra indices where ROI nodes are
I    I--/tet_idx_tetrahedra_center  [12, 15, 43, ...]            Tetrahedra indices where center points of
                                                                    ROI tetrahedra are
I    I--/tet_idx_triangle_center    [12, 15, 43, ...]            Tetrahedra indices where center points of
                                                                    ROI triangles are

I---/1
I    I ...
pynibs.hdf5_io.write_geo_hdf5_surf(out_fn, points, con, replace=False, hdf5_path='/mesh')

Creates a .hdf5 file with geometry data from midlayer.

Parameters
  • out_fn (str) – Filename of output .hdf5 file containing the geometry information

  • points (nparray [N_points x 3]) – Coordinates of nodes (x,y,z)

  • con (nparray [N_tri x 3]) – Connectivity list of triangles

  • replace (boolean) – Replace .hdf5 geometry file (True / False)

  • hdf5_path (str) – Folder in .hdf5 geometry file, where the geometry information is saved in (Default: /mesh)

Returns

<File> – File containing the geometry information.

Return type

.hdf5 file

Example

File structure of .hdf5 geometry file:

mesh
|---/elm
|    |--/triangle_number_list   [1,5,6;... ;1,4,8]      Connectivity of triangles [X, X, X]
|    |--/tri_tissue_type        [1,1, ..., 3,3,3]       Surface indices to differentiate between surfaces
|
|---/nodes
|    |--/node_coord             [1.2, 1.7, 1.8; ...]    Node coordinates in (mm)
pynibs.hdf5_io.write_temporal_xdmf(hdf5_fn, data_folder='c', coil_center_folder=None, coil_ori_0_folder=None, coil_ori_1_folder=None, coil_ori_2_folder=None, coil_current_folder=None, hdf5_geo_fn=None, overwrite_xdmf=False, verbose=False)

Creates .xdmf markup file for given ROI hdf5 data file with 4D data. This was written to be able to visualize data from the permutation analysis of the regression approach It expects an .hdf5 with a data group with (many) subarrays. The N subarrays name should be named from 0 to N-1 Each subarray has shape = (N_elemns,1)

Not tested for whole brain.

hdf5:/data_folder/0

/1 /2 /3 /4 …

Parameters
  • hdf5_fn (str) – Filename of hdf5 file containing the data

  • data_folder (str) – Path within hdf5 to group of dataframes

  • hdf5_geo_fn (str (optional)) – Filename of hdf5 file containing the geometry

  • overwrite_xdmf (boolean) – Overwrite existing xdmf file if present

  • coil_center_folder (str) –

  • coil_ori_0_folder (str) –

  • coil_ori_1_folder (str) –

  • coil_ori_2_folder (str) –

  • coil_current_folder (str) –

  • verbose (boolean) – Print output or not

Returns

<File> – hdf5_fn[-4].xdmf

Return type

.xdmf file

pynibs.hdf5_io.write_xdmf(hdf5_fn, hdf5_geo_fn=None, overwrite_xdmf=False, overwrite_array=False, verbose=False, mode='r+')

Creates .xdmf markup file for given hdf5 file, mainly for paraview visualization. Checks if triangles and tetrahedra already exists as distinct arrays in hdf5_fn . If not, these are added to the .hdf5 file and rebased to 0 (from 1). If only hdf5_fn is provided, spatial information has to be present as arrays for tris and tets in this dataset.

Parameters
  • hdf5_fn (str) – Filename of hdf5 file containing the data

  • hdf5_geo_fn (str) – Filename of hdf5 file containing the geometry. Optional.

  • overwrite_xdmf (bool) – Overwrite existing xdmf file if present. Default: False.

  • overwrite_array (bool) – Overwrite existing arrays if present. Default: False.

  • verbose (boolean) – Print output or not

  • mode (str, optional, default: "r+") – Mode to open hdf5_geo file. If hdf5_geo is already separated in tets and tris etc, nothing has to be written, use “r” to avoid IOErrors in case of parallel computing.

Returns

  • <File> (.xdmf file) – hdf5_fn[-4].xdmf (only data if hdf5Geo_fn provided)

  • <File> (.hdf5 file) – hdf5_fn changed if neccessary

  • <File> (.hdf5 file) – hdf5geo_fn containing spatial data

pynibs.main module

class pynibs.main.TetrahedraLinear(points, triangles, triangles_regions, tetrahedra, tetrahedra_regions)

Bases: object

Mesh, consisting of linear tetrahedra.

Parameters
  • points (array of float [N_points x 3]) – Vertices of FE mesh

  • triangles (nparray of int [N_tri x 3]) – Connectivity of points forming triangles

  • triangles_regions (nparray of int [N_tri x 1]) – Region identifiers of triangles

  • tetrahedra (nparray of int [N_tet x 4]) – Connectivity of points forming tetrahedra

  • tetrahedra_regions (nparray of int [N_tet x 1]) – Region identifiers of tetrahedra

N_points

Number of vertices

Type

int

N_tet

Number of tetrahedra

Type

int

N_tri

Number of triangles

Type

int

N_region

Number of regions

Type

int

region

Region labels

Type

nparray of int

tetrahedra_volume

Volumes of tetrahedra

Type

nparray of float [N_tet x 1]

tetrahedra_center

Center of tetrahedra

Type

nparray of float [N_tet x 1]

triangles_center

Center of triangles

Type

nparray of float [N_tri x 1]

triangles_normal

Normal components of triangles pointing outwards

Type

nparray of float [N_tri x 3]

Methods

calc_E(grad_phi, omegaA)

Calculate electric field with gradient of electric potential and omega-scaled magnetic vector potential A.

calc_E_normal_tangential_surface(E, fname)

Calculate normal and tangential component of electric field on given surfaces of mesh instance.

calc_E_on_GM_WM_surface(E, roi)

Determines the normal and tangential component of the induced electric field on a GM-WM surface using nearest neighbour principle.

calc_E_on_GM_WM_surface3(phi, dAdt, roi[, ...])

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface).

calc_E_on_GM_WM_surface_simnibs(phi, dAdt, ...)

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface) or by using the Simnibs interpolation function.

calc_E_on_GM_WM_surface_simnibs_KW(phi, ...)

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface) or by using the Simnibs interpolation function.

calc_J(E, sigma)

Calculate current density J.

calc_QOI_in_points(qoi, points_out)

Calculate QOI_out in points_out using the mesh instance and the quantity of interest (QOI).

calc_QOI_in_points_tet_idx(qoi, points_out, ...)

Calculate QOI_out in points_out sitting in tet_idx using the mesh instance and the quantity of interest (QOI).

calc_gradient(phi)

Calculate gradient of scalar DOF in tetrahedra center.

calc_surface_adjacent_tetrahedra_idx_list(fname)

Determine the indices of the tetrahedra touching the surfaces and save the indices into a .txt file specified with fname.

data_elements2nodes(data)

Transforms an data in tetrahedra into the nodes after Zienkiewicz et al. (1992) [1].

data_nodes2elements(data)

Interpolate data given in the nodes to the tetrahedra center.

get_faces([tetrahedra_indexes])

Creates a list of nodes in each face and a list of faces in each tetrahedra.

get_outside_faces([tetrahedra_indexes])

Creates a list of nodes in each face that are in the outer volume.

calc_E(grad_phi, omegaA)

Calculate electric field with gradient of electric potential and omega-scaled magnetic vector potential A.

\mathbf{E}=-\nabla\varphi-\omega\mathbf{A}

Parameters
  • grad_phi (nparray of float [N_tet x 3]) – Gradient of Scalar DOF in tetrahedra center

  • omegaA (nparray of float [N_tet x 3]) – Magnetic vector potential in tetrahedra center (scaled with angular frequency omega)

Returns

E – Electric field in tetrahedra center

Return type

nparray of float [N_tet x 3]

calc_E_normal_tangential_surface(E, fname)

Calculate normal and tangential component of electric field on given surfaces of mesh instance.

Parameters
  • E (nparray of float [N_tri x 3]) – Electric field data on surfaces

  • fname (str) – Filename of the .txt file containing the tetrahedra indices, which are adjacent to the surface triangles generated by the method “calc_surface_adjacent_tetrahedra_idx_list(self, fname)”

Returns

  • En_pos (nparray of float [N_tri x 3]) – Normal component of electric field of top side (outside) of surface

  • En_neg (nparray of float [N_tri x 3]) – Normal component of electric field of bottom side (inside) of surface

  • n (nparray of float [N_tri x 3]) – Normal vector

  • Et (nparray of float [N_tri x 3]) – Tangential component of electric field lying in surface

  • t (nparray of float [N_tri x 3]) – Tangential vector

calc_E_on_GM_WM_surface(E, roi)

Determines the normal and tangential component of the induced electric field on a GM-WM surface using nearest neighbour principle.

Parameters
  • E (nparray of float [N_tri x 3]) – Induced electric field given in the tetrahedra centre of the mesh instance

  • roi (pyfempp.roi.RegionOfInterestSurface) – RegionOfInterestSurface object class instance

Returns

  • E_normal (nparray of float [N_points x 3]) – Normal vector of electric field on GM-WM surface

  • E_tangential (nparray of float [N_points x 3]) – Tangential vector of electric field on GM-WM surface

calc_E_on_GM_WM_surface3(phi, dAdt, roi, verbose=True, mode='components')

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface).

Parameters
  • phi (nparray of float [N_nodes x 1]) – Scalar electric potential given in the nodes of the mesh

  • dAdt (nparray of float [N_nodes x 3]) – Magnetic vector potential given in the nodes of the mesh

  • roi (object instance) – RegionOfInterestSurface object class instance

  • verbose (boolean) – Print information to stdout

  • mode (str) – Select mode of output: - “components” : return x, y, and z component of tangential and normal components - “magnitude” : return magnitude of tangential and normal component (normal with sign for direction)

Returns

  • E_normal (nparray of float [N_points x 3]) – Normal vector of electric field on GM-WM surface

  • E_tangential (nparray of float [N_points x 3]) – Tangential vector of electric field on GM-WM surface

calc_E_on_GM_WM_surface_simnibs(phi, dAdt, roi, subject, verbose=False, mesh_idx=0)

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface) or by using the Simnibs interpolation function.

Parameters
  • phi (nparray of float [N_nodes x 1]) – Scalar electric potential given in the nodes of the mesh

  • dAdt (nparray of float [N_nodes x 3]) – Magnetic vector potential given in the nodes of the mesh

  • roi (object instance) – RegionOfInterestSurface object class instance

  • subject (Subject object) – Subject object loaded from .hdf5 file

  • verbose (boolean) – Print information to stdout

  • mesh_idx (int) – Mesh index

Returns

  • E_normal (nparray of float [N_points x 3]) – Normal vector of electric field on GM-WM surface

  • E_tangential (nparray of float [N_points x 3]) – Tangential vector of electric field on GM-WM surface

calc_E_on_GM_WM_surface_simnibs_KW(phi, dAdt, roi, subject, verbose=False, mesh_idx=0)

Determines the normal and tangential component of the induced electric field on a GM-WM surface by recalculating phi and dA/dt in an epsilon environment around the GM/WM surface (upper and lower GM-WM surface) or by using the Simnibs interpolation function.

Parameters
  • phi (nparray of float [N_nodes x 1]) – Scalar electric potential given in the nodes of the mesh

  • dAdt (nparray of float [N_nodes x 3]) – Magnetic vector potential given in the nodes of the mesh

  • roi (object instance) – RegionOfInterestSurface object class instance

  • subject (Subject object) – Subject object loaded from .hdf5 file

  • verbose (boolean) – Print information to stdout

  • mesh_idx (int) – Mesh index

Returns

  • E_normal (nparray of float [N_points x 3]) – Normal vector of electric field on GM-WM surface

  • E_tangential (nparray of float [N_points x 3]) – Tangential vector of electric field on GM-WM surface

calc_J(E, sigma)

Calculate current density J. The conductivity sigma is a list of np.arrays containing conductivities of regions (scalar and/or tensor).

\mathbf{J} = [\sigma]\mathbf{E}

Parameters
  • E (nparray of float [N_tet x 3]) – Electric field in tetrahedra center

  • sigma (list of nparray of float [N_regions][3 x 3]) – Conductivities of regions (scalar and/or tensor).

Returns

E – Electric field in tetrahedra center

Return type

nparray of float [N_tet x 3]

calc_QOI_in_points(qoi, points_out)

Calculate QOI_out in points_out using the mesh instance and the quantity of interest (QOI).

Parameters
  • qoi (nparray of float) – Quantity of interest in nodes of tetrahedra mesh instance

  • points_out (nparray of float) – Point coordinates (x, y, z) where the qoi is going to be interpolated by linear basis functions

Returns

qoi_out – Quantity of interest in points_out

Return type

nparray of float

calc_QOI_in_points_tet_idx(qoi, points_out, tet_idx)

Calculate QOI_out in points_out sitting in tet_idx using the mesh instance and the quantity of interest (QOI).

Parameters
  • qoi (nparray of float) – Quantity of interest in nodes of tetrahedra mesh instance

  • points_out (nparray of float) – Point coordinates (x, y, z) where the qoi is going to be interpolated by linear basis functions

  • tet_idx (nparray of int) – Element indices where the points_out are sitting

Returns

qoi_out – Quantity of interest in points_out

Return type

nparray of float

calc_gradient(phi)

Calculate gradient of scalar DOF in tetrahedra center.

Parameters

phi (nparray of float [N_nodes]) – Scalar DOF the gradient is calculated for

Returns

grad_phi – Gradient of Scalar DOF in tetrahedra center

Return type

nparray of float [N_tet x 3]

calc_surface_adjacent_tetrahedra_idx_list(fname)

Determine the indices of the tetrahedra touching the surfaces and save the indices into a .txt file specified with fname.

Parameters

fname (str) – Filename of output .txt file

Returns

<File> – Element indices of the tetrahedra touching the surfaces (outer-most elements)

Return type

.txt file

data_elements2nodes(data)

Transforms an data in tetrahedra into the nodes after Zienkiewicz et al. (1992) [1]. Can only transform volume data, i.e. needs the data in the surrounding tetrahedra to average it to the nodes. Will not work well for discontinuous fields (like E, if several tissues are used).

Parameters

data (nparray [N_elements x N_data]) – Data in tetrahedra

Returns

data_nodes – Data in nodes

Return type

np.ndarray [N_nodes x N_data]

Notes

1

Zienkiewicz, Olgierd Cecil, and Jian Zhong Zhu. “The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique.” International Journal for Numerical Methods in Engineering 33.7 (1992): 1331-1364.

data_nodes2elements(data)

Interpolate data given in the nodes to the tetrahedra center.

Parameters

data (nparray [N_nodes x N_data]) – Data in nodes

Returns

data_elements – Data in elements

Return type

nparray [N_elements x N_data]

get_faces(tetrahedra_indexes=None)

Creates a list of nodes in each face and a list of faces in each tetrahedra.

Parameters

tetrahedra_indexes (nparray) – Indices of the tetrehedra where the faces are to be determined (default: all tetrahedra)

Returns

  • faces (nparray) – List of nodes in faces, in arbitrary order

  • th_faces (nparray) – List of faces in each tetrahedra, starts at 0, order=((0, 2, 1), (0, 1, 3), (0, 3, 2), (1, 2, 3))

  • face_adjacency_list (nparray) – List of tetrahedron adjacent to each face, filled with -1 if a face is in a single tetrahedron. Not in the normal element ordering, but only in the order the tetrahedra are presented

get_outside_faces(tetrahedra_indexes=None)

Creates a list of nodes in each face that are in the outer volume.

Parameters

tetrahedra_indices (nparray) – Indices of the tetrehedra where the outer volume is to be determined (default: all tetrahedra)

Returns

faces – List of nodes in faces in arbitrary order

Return type

nparray

pynibs.main.calc_gradient_surface(phi, points, triangles)

Calculate gradient of potential phi on surface (i.e. tangential component) given in vertices of a triangular mesh forming a 2D surface.

Parameters
  • phi (nparray of float [N_points x 1]) – Potential in nodes

  • points (nparray of float [N_points x 3]) – Coordinates of nodes (x,y,z)

  • triangles (nparray of int32 [N_tri x 3]) – Connectivity of triangular mesh

Returns

grad_phi – Gradient of potential phi on surface

Return type

nparray of float [N_tri x 3]

pynibs.main.calc_tetrahedra_volume_cross(P1, P2, P3, P4)

Calculates volume of tetrahedra specified by the 4 points P1…P4 multiple tetrahedra can be defined by P1…P4 as 2-D np.arrays using the cross and vector dot product

P1=\begin{bmatrix}
x_{{tet}_1} & y_{{tet}_1} & z_{{tet}_1}   \\
x_{{tet}_2} & y_{{tet}_2} & z_{{tet}_2}   \\
... & ... & ...    \\
x_{{tet}_N} & y_{{tet}_N} & z_{{tet}_N}    \\
\end{bmatrix}

Parameters
  • P1 (nparray of float [N_tet x 3]) – Coordinates of first point of tetrahedra

  • P2 (nparray of float [N_tet x 3]) – Coordinates of second point of tetrahedra

  • P3 (nparray of float [N_tet x 3]) – Coordinates of third point of tetrahedra

  • P4 (nparray of float [N_tet x 3]) – Coordinates of fourth point of tetrahedra

Returns

tetrahedra_volume – Volumes of tetrahedra

Return type

nparray of float [N_tet x 1]

pynibs.main.calc_tetrahedra_volume_det(P1, P2, P3, P4)

Calculate volume of tetrahedron specified by 4 points P1…P4 multiple tetrahedra can be defined by P1…P4 as 2-D np.arrays using the determinant.

P1=\begin{bmatrix}
x_{{tet}_1} & y_{{tet}_1} & z_{{tet}_1}   \\
x_{{tet}_2} & y_{{tet}_2} & z_{{tet}_2}   \\
... & ... & ...    \\
x_{{tet}_N} & y_{{tet}_N} & z_{{tet}_N}    \\
\end{bmatrix}

Parameters
  • P1 (nparray of float [N_tet x 3]) – Coordinates of first point of tetrahedra

  • P2 (nparray of float [N_tet x 3]) – Coordinates of second point of tetrahedra

  • P3 (nparray of float [N_tet x 3]) – Coordinates of third point of tetrahedra

  • P4 (nparray of float [N_tet x 3]) – Coordinates of fourth point of tetrahedra

Returns

tetrahedra_volume – Volumes of tetrahedra

Return type

nparray of float [N_tet x 1]

pynibs.main.cross_product(A, B)

Evaluates the cross product between the vector pairs in a and b using pure Python.

Parameters

a,b (nparray of float 2 x [N x 3]) – Input vectors, the cross product is evaluated between

Returns

c – Cross product between vector pairs in a and b

Return type

nparray of float [N x 3]

pynibs.main.cross_product_einsum2(a, b)

Evaluates the cross product between the vector pairs in a and b using the double Einstein sum.

Parameters

a,b (nparray of float 2 x [N x 3]) – Input vectors, the cross product is evaluated between

Returns

c – Cross product between vector pairs in a and b

Return type

nparray of float [N x 3]

pynibs.main.data_elements2nodes(data, con)

Transform data given in the element centers of linear finite element mesh and transform it into the nodal values.

Parameters
  • data (nparray of float [N_elements x N_data] or list of nparray) – Data given in the elements (multiple datasets who fit to con may be passed in a list)

  • con (nparray of int, triangles: [N_elements x 3], tetrahedra: [N_elements x 4]) – Connectivity index list forming the elements

Returns

out – Data given in the nodes

Return type

nparray of float [N_nodes x N_data] or list of nparray

pynibs.main.data_nodes2elements(data, con)

Transform data given in the nodes of linear finite element mesh and transform it into the centre of the elements.

Parameters
  • data (nparray of float [N_nodes x N_data]) – Data given in the nodes

  • con (nparray of int, triangles: [N_elements x 3], tetrahedra: [N_elements x 4]) – Connectivity index list forming the elements

Returns

out – Data given in the element centers

Return type

nparray of float [N_elements x N_data]

pynibs.main.data_superimpose(fn_in_hdf5_data, fn_in_geo_hdf5, fn_out_hdf5_data, data_hdf5_path='/data/tris/', data_substitute=- 1, normalize=False)

Overlaying data stored in .hdf5 files except in regions where data_substitute is found. This points are omitted in the analysis and will be replaced by data_substitute instead.

Parameters
  • fn_in_hdf5_data (list of str) – Filenames of .hdf5 data files with common geometry (e.g. generated by pynibs.data_sub2avg(…))

  • fn_in_geo_hdf5 (str) – Geometry .hdf5 file, which corresponds to the .hdf5 data files

  • fn_out_hdf5_data (str) – Filename of .hdf5 data output file containing the superimposed data

  • data_hdf5_path (str) – Path in .hdf5 data file where data is stored (e.g. ‘/data/tris/’)

  • data_substitute (float or NaN) – Data substitute with this number for all points in the inflated brain, which do not belong to the given data set (Default: -1)

  • normalize (boolean or str) – Decide if individual datasets are normalized w.r.t. their maximum values before they are superimposed (Default: False) - ‘global’: global normalization w.r.t. maximum value over all datasets and subjects - ‘dataset’: dataset wise normalization w.r.t. maximum of each dataset individually (over subjects) - ‘subject’: subject wise normalization (over datasets)

Returns

<File> – Overlayed data

Return type

.hdf5 file

pynibs.main.determine_e_midlayer(fn_e_results, fn_mesh_hdf5, subject, mesh_idx, roi_idx, n_cpu=4, midlayer_fun='simnibs', phi_scaling=1.0, verbose=False)

Parallel version to determine the midlayer e-fields from a list of .hdf5 results files

Parameters
  • fn_e_results (list of str) – List of results filenames (.hdf5 format)

  • fn_mesh_hdf5 (str) – Filename of corresponding mesh file

  • subject (pynibs.SUBJECT object) – Subject object

  • mesh_idx (int) – Mesh index

  • roi_idx (int) – ROI index

  • n_cpu (int, optional, default: 4) – Number of parallel computations

  • midlayer_fun (str, optional, default: "simnibs") – Method to determine the midlayer e-fields (“pynibs” or “simnibs”)

  • phi_scaling (float, optional, default: 1.0) – Scaling factor of scalar potential to change between “m” and “mm”

Returns

Adds midlayer e-field results to ROI

Return type

<File> .hdf5 file

pynibs.main.determine_e_midlayer_workhorse(fn_e_results, subject, mesh_idx, midlayer_fun, fn_mesh_hdf5, roi_idx, phi_scaling=1.0, verbose=False)
phi_scaling: float

simnibs < 3.0 : 1000. simnibs >= 3.0 : 1. (Default)

pynibs.main.find_element_idx_by_points(nodes, con, points)

Finds the tetrahedral element index of an arbitrary point in the FEM mesh.

Parameters
  • nodes (nparray [N_nodes x 3]) – Coordinates (x, y, z) of the nodes

  • con (nparray [N_tet x 4]) – Connectivity matrix

  • points (nparray [N_points x 3]) – Points for which the element indices are found.

Returns

ele_idx – Element indices of tetrahedra where corresponding ‘points’ are lying in

Return type

nparray [N_points]

pynibs.main.map_data_to_surface(datasets, points_datasets, con_datasets, fname_fsl_gm, fname_fsl_wm, fname_midlayer=None, delta=0.5, input_data_in_center=True, return_data_in_center=True, data_substitute=- 1)

Maps data from ROI of fsl surface (wm, gm, or midlayer) to given Freesurfer brain surface (wm, gm, inflated).

Parameters
  • datasets (nparray of float [N_points x N_data] or list of nparray) – Data in nodes or center of triangles in ROI (specify this in “data_in_center”)

  • points_datasets (nparray of float [N_points x 3] or list of nparray) – Point coordinates (x,y,z) of ROI where data in datasets list is given, the points have to be a subset of the GM/WM surface (has to be provided for each dataset)

  • con_datasets (nparray of int [N_tri x 3] or list of nparray) – Connectivity matrix of dataset points (has to be provided for each dataset)

  • fname_fsl_gm (str or list of str or list of None) – Filename of pial surface fsl file(s) (one or two hemispheres) e.g. in mri2msh: …/fs_ID/surf/lh.pial

  • fname_fsl_wm (str or list of str or list of None) – Filename of wm surface fsl file(s) (one or two hemispheres) e.g. in mri2msh: …/fs_ID/surf/lh.white

  • fname_midlayer (str or list of str) – Filename of midlayer surface fsl file(s) (one or two hemispheres) e.g. in headreco: …/fs_ID/surf/lh.central

  • delta (float) – Distance parameter where gm-wm surface was generated 0…1 (default: 0.5) 0 -> WM surface 1 -> GM surface

  • input_data_in_center (bool) – Flag if data in datasets in given in triangle centers or in points (Default: True)

  • return_data_in_center (bool) – Flag if data should be returned in nodes or in elements (Default: True)

  • data_substitute (float) – Data substitute with this number for all points in the inflated brain, which do not belong to the given data set

Returns

data_mapped – Mapped data to target brain surface. In points or elements

Return type

nparray of float [N_points_inf x N_data]

pynibs.main.project_on_scalp(coords, mesh, scalp_tag=1005)

Find the node in the scalp closest to each coordinate

Parameters
  • coords (nx3 ndarray) – Vectors to be transformed

  • mesh (pyfempp.TetrahedraLinear or simnibs.msh.mesh_io.Msh) – Mesh structure in simnibs or pynibs format

  • scalp_tag (int, optional, default: 1005) – Tag in the mesh where the scalp is to be set. Default: 1005

Returns

points_closest – coordinates projected scalp (closest skin points)

Return type

nx3 ndarray

pynibs.main.project_on_scalp_hdf5(coords, mesh, scalp_tag=1005)

Find the node in the scalp closest to each coordinate

Parameters
  • coords (nx3 ndarray) – Vectors to be transformed

  • mesh (str or pyfempp.TetrahedraLinear) – Filename of mesh in .hdf5 format or Mesh structure

  • scalp_tag (int (optional)) – Tag in the mesh where the scalp is to be set. Default: 1005

Returns

points_closest – coordinates projected scalp (closest skin points)

Return type

nx3 ndarray

pynibs.main.refine_surface(fn_surf, fn_surf_refined, center, radius, repair=True, remesh=True, verbose=True)

Refines surface (.stl) in spherical ROI an saves as .stl file.

Parameters
  • fn_surf (str) – Input filename (.stl)

  • fn_surf_refined (str) – Output filename (.stl)

  • center (ndarray of float (3)) – Center of spherical ROI (x,y,z)

  • radius (float) – Radius of ROI

  • repair (bool, optional, default: True) – Repair surface mesh to ensure that it is watertight and forms a volume

  • remesh (bool, optional, default:False) – Perform remeshing with meshfix (also removes possibly overlapping facets and intersections)

  • verbose (bool, optional, default: True) – Print output messages

Returns

<file>

Return type

.stl file

pynibs.muap module

pynibs.muap.calc_mep_wilson(firing_rate_in, t, Qvmax=900, Qmmax=300, q=8, Tmin=14, N=100, M0=42, lam=0.002, tau0=0.006)

Determine motor evoked potential from incoming firing rate

Parameters
  • firing_rate_in (ndarray of float [n_t]) – Input firing rate from alpha motor neurons

  • t (ndarray of float [n_t]) – Time axis in s

  • Qvmax (float, optional, default: 900) – Max of incoming firing rate [1/s]

  • Qmmax (float, optional, default: 300) – Max of MU firing rate [1/s]

  • q (float, optional, default: 8) – Min firing rate of MU [1/s]

  • Tmin (float, optional, default: 14) – Min MU threshold [1/s]

  • N (float, optional, default: 100) – Number of MU

  • M0 (float, optional, default: 42) – Scaling constant of MU amplitude [mV/s]

  • lam (float, optional, default: 0.002) – MUAP timescale of first order Hermite Rodriguez function [s]

  • tau0 (float, optional, default: 0.006) – Standard shift of MUAP to ensure causality [s]

Returns

mep – Motor evoked potential at surface electrode

Return type

ndarray of float [n_t]

pynibs.muap.compute_signal(signal_matrix, sensor_matrix)

Determine average signal from one single muscle fibre on all point electrodes

Parameters
  • signal_matrix (ndarray of float [n_time x n_fibre]) – Signal matrix containing the action potential values for each time step in the rows

  • sensor_matrix (ndarray of float [n_fibre x n_ele]) – Sensor matrix containing the inverse distances weighted with the anisotropy of muscle tissue

Returns

signal – Average signal detected all point electrodes

Return type

ndarray of float [n_time]

pynibs.muap.create_electrode(l_x, l_z, n_x, n_z)

Creates electrode coordinates

Parameters
  • l_x (float) – X-extension of electrode in mm

  • l_z (float) – Z-extension of electrode in mm

  • n_x (int) – Number of point electrode in x-direction

  • n_z (int) – Number of point electrodes in z-direction

Returns

electrode_coords – Coordinates of point electrodes (x, y, z)

Return type

ndarray of float [n_ele x 3]

pynibs.muap.create_muscle_coords(l_x, l_y, n_x, n_y, h)

Create x and y coordinates of muscle fibres in muscle

Parameters
  • l_x (float) – X-extension of muscle in mm

  • l_y (float) – Y-extension of muscle in mm

  • n_x (int) – Number of muscle fibres in x-direction

  • n_y (int) – Number of muscle fibres in y-direction

  • h (float) – Offset of muscle from electrode plane in mm

Returns

muscle_coords – Coordinates of muscle fibres in x-y plane (x, y, z)

Return type

ndarray of float [n_muscle x 3]

pynibs.muap.create_muscle_fibre(x0, y0, L, n_fibre)

Creates muscle fibre coordinates (in z-direction)

Parameters
  • x0 (float) – X-location of muscle fibre

  • y0 (float) – Y-location of muscle fibre

  • L (float) – Length of muscle fibre

  • n_fibre (float) – Number of discrete fibre elements

Returns

fibre_coords – Coordinates of muscle fibre in z-direction (x, y, z)

Return type

ndarray of float [n_fibre x 3]

pynibs.muap.create_sensor_matrix(electrode_coords, fibre_coords, sigma_r=1, sigma_z=1)

Create sensor matrix containing the inverse distances from the point electrodes to the fibre elements weighted by the anisotropy factor of the muscle tissue.

Parameters
  • electrode_coords (ndarray of float [n_ele x 3]) – Coordinates of point electrodes (x, y, z)

  • fibre_coords (ndarray of float [n_fibre x 3]) – Coordinates of muscle fibre in z-direction (x, y, z)

  • sigma_r (float, optional, default: 1) – Radial conductivity of muscle

  • sigma_z (float, optional, default: 1) – Axial conductivity of muscle along fibre

Returns

sensor_matrix – Sensor matrix containing the inverse distances weighted with the anisotropy of muscle tissue

Return type

ndarray of float [n_fibre x n_ele]

pynibs.muap.create_signal_matrix(T, dt, fibre_coords, z_e, v)

Create signal matrix containing the travelling action potential on the fibre

Parameters
  • T (float) – Total time

  • dt (float) – Time step

  • fibre_coords (ndarray of float [n_fibre x 3]) – Coordinates of muscle fibre in z-direction (x, y, z)

  • z_e (float) – Location of action potential generation

  • v (float) – Velocity of action potential

Returns

signal_matrix – Signal matrix containing the action potential values for each time step in the rows

Return type

ndarray of float [n_time x n_fibre]

pynibs.muap.dipole_potential(z, loc, response)

Returns dipole potential at given coordinates z (interpolates given dipole potential)

pynibs.muap.hermite_rodriguez_1st(t, tau0=0, tau=0, lam=0.002)

First order Hermite Rodriguez function to model surface MUAPs

Parameters
  • t (ndarray of float [n_t]) – Time axis in s

  • tau0 (float, optional, default: 0) – initial shift to ensure causality in s

  • tau (float, optional, default: 0) – shift (firing time) in s

  • lam (float, optional, default: 2) – Timescale in s

Returns

y – Surface MUAP

Return type

ndarray of float [n_t]

pynibs.muap.sfap(z, sigma_i=1.01, d=5.4999999999999995e-05, alpha=0.5)

Single fibre propagating transmembrane current (second spatial derivative of transmembrane potential).

S. D. Nandedkar and E. V. Stalberg,“Simulation of single musclefiberaction potentials” Med. Biol. Eng. Comput., vol. 21, pp. 158–165, Mar.1983.

J. Duchene and J.-Y. Hogrel,“A model of EMG generation,” IEEETrans. Biomed. Eng., vol. 47, no. 2, pp. 192–200, Feb. 2000

Hamilton-Wright, A., & Stashuk, D. W. (2005). Physiologically based simulation of clinical EMG signals. IEEE Transactions on biomedical engineering, 52(2), 171-183.

Parameters
  • t (ndarray of float [n_t]) – Time in (ms)

  • sigma_i (float, optional, default: 1.01) – Intracellular conductivity in (S/m)

  • d (float, optional, default: 55*1e-6) – Diameter of muscle fibre in (m)

  • v (float, optional, default: 1) – Conduction velocity in (m/s)

  • alpha (float, optional, default: 0.5) – Scaling factor to adjust length of AP

Returns

i – Transmembrane current of muscle fibre

Return type

ndarray of float [n_t]

pynibs.muap.sfap_dip(z)
pynibs.muap.weight_signal_matrix(signal_matrix, fn_imp, t, z)

Weight signal matrix with impulse response from single dipole at every location

pynibs.neuron module

pynibs.opt module

pynibs.opt.get_det_fim(x, fun, p, fim_matrix)

Updates the Fisher Information Matrix and returns the negative determinant based on the sample x. It is a score how much information the additional sample yields.

Parameters
  • fun (function object) – Function object defined in interval [0, 1].

  • x (float) – Single sample location (interval [0, 1])

  • p (dict) – Dictionary containing the parameter estimates. The keys are the parameter names of fun.

  • fim_matrix (ndarray of float [n_params x n_params]) – Fisher Information Matrix

Returns

det – Determinant of the Fisher Information Matrix after adding sample x

Return type

float

pynibs.opt.get_fim_sample(fun, x, p)

Get Fisher Information Matrix of one single sample.

Parameters
  • fun (function object) – Function object the fisher information matrix is calculated for. The sample is passed as the first argument.

  • x (float) – Sample passed to function

  • p (dict) – Dictionary containing the parameter estimates. The keys are the parameter names of fun.

Returns

fim_matrix – Fisher information matrix

Return type

ndarray of float [n_params x n_params]

pynibs.opt.get_optimal_coil_positions(e_matrix, criterion, n_stim, ele_idx_1=None, ele_idx_2=None, fn_out_hdf5=None, n_cpu=4, zap_idx_opt=None, fun=None, p=None, c=None, weights=[0.5, 0.5], overwrite=True, verbose=True, fn_coilpos_hdf5=None, start_zap_idx=0)

Determine set of optimal coil positions for TMS regression analysis.

Parameters
  • e_matrix (ndarray of float [n_stim, n_ele]) – Matrix containing the electric field values in the ROI

  • criterion (str) – Optimization criterion: - “mc_cols”: Minimization of mutual coherence between columns - “mc_rows”: Minimization of mutual coherence between rows - “svd”: Minimization of condition number - “dist”: Equal distant sampling - “dist_svd”: Minimization of condition number and equidistant sampling - “dist_mc_cols”: Minimization of mutual coherence between columns and equidistant sampling - “dist_mc_rows”: Minimization of mutual coherence between rows and equidistant sampling - “coverage”: Maximizes the electric field coverage - “variability”: Maximizes variability between elements

  • n_stim (int) – Maximum number of stimulations

  • ele_idx_1 (ndarray of int, optional, default: None) – Element indices the first optimization goal is performed for, If None, all elements are consiered

  • ele_idx_2 (ndarray of int, optional, default: None) – Element indices the first optimization goal is performed for. If None, all elements are consiered

  • n_cpu (int) – Number of threads

  • fn_out_hdf5 (str, optional, default: None) – Returns the list of optimal zap indices if fn_out_hdf5 is None, otherwise, save the results in .hdf5 file. Filename of output .hdf5 file where the zap index lists are saved in subfolder “zap_index_lists” - “zap_index_lists/0”: [213] - “zap_index_lists/1”: [213, 5] - etc

  • zap_idx_opt (list of int, optional, default: None) – List of already selected optimal coil positions (those are ignored in the optimization and will not be picked again)

  • fun (function object) – Function object defined in interval [0, 1]. (only needed for fim optimization)

  • p (list of dict [n_ele], optional, default: None) – List of dicts containing the parameter estimates (whole ROI). The keys are the parameter names of fun. (only needed for fim and dist optimization)

  • c (ndarray of float [n_ele], optional, default: None) – Congruence factor in each ROI element. Used to weight fim and dist optimization. (only needed for fim and dist optimization)

  • weights (list of float [2], optional, default: [0.5, 0.5]) – Weights of optimization criteria in case of multiple goal functions (e.g. fim_svd). Higher weight means higher importance for the respective criteria. By default both optimization criteria are weighted equally [0.5, 0.5].

  • overwrite (bool, optional, default: True) – Overwrite existing solutions or read existing hdf5 file and continue optimization

  • verbose (bool, optional, default: True) – Print output messages

  • fn_coilpos_hdf5 (str) – File containing the corresponding coil positions and orientations (centers, m0, m1, m2)

  • start_zap_idx (int, optional, default: 0) – First zap index to start greedy search

Returns

  • zap_idx_e_opt (list of int [n_stim]) – Optimal zap indices

  • <File> .hdf5 file – Output file containing the zap index lists

pynibs.opt.get_optimal_sample_fim(fun, p, x=None)

Determines optimal location of next sample by maximizing the determinant of the Fisher Information Matrix.

Parameters
  • fun (function object) – Function object (interval [0, 1]).

  • x (ndarray of float, optional, default: None) – Previous sample locations (interval [0, 1]).

  • p (dict) – Dictionary containing the parameter estimates. The keys are the parameter names of fun.

Returns

x_opt – Optimal location of next sample (interval [0, 1]).

Return type

float

pynibs.opt.init_fim_matrix(fun, x, p)

Initializes the Fisher Information Matrix based on the samples given in x.

Parameters
  • fun (function object) – Function object defined in interval [0, 1].

  • x (ndarray of float) – Initial sample locations (interval [0, 1])

  • p (dict) – Dictionary containing the parameter estimates. The keys are the parameter names of fun.

Returns

fim_matrix – Fisher Information Matrix

Return type

ndarray of float [n_params x n_params]

pynibs.opt.online_optimization(fn_subject_hdf5, fn_roi_ss_indices_hdf5, fn_out_hdf5, fn_stimsites_hdf5, e_matrix, mep, mesh_idx, roi_idx, n_zaps_init=3, criterion_init='mc_rows', criterion='coverage', n_cpu=4, threshold=0.8, weights=[0.5, 0.5], eps0=0.01, eps0_dist=1, exponent=5, perc=99, n_refit=0, fun=<function sigmoid>, verbose=True)

Performs virtual online optimization to determine the congruence factor. After an initial set of coil positions, the algorithm iteratively optimizes the next coil position based on the virtually measured MEP data.

Parameters
  • fn_subject_hdf5 (str) – Filename of subject .hdf5 file

  • fn_roi_ss_indices_hdf5 (str) – Filename of .hdf5 file containing the element indices of the subsampled ROI in f[“roi_indices”]

  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • fn_out_hdf5 (str) – Filename of .hdf5 output file containing the coil positions and the congruence factor maps for every iteration

  • fn_stimsites_hdf5 (str) – Filename of the .hdf5 file containing the stimulation sites in “centers”, “m0”, “m1”, “m2”

  • mesh_idx (int) – Mesh index

  • roi_idx (int) – ROI index

  • n_zaps_init (int, optional, default: 3) – Number of initial samples optimized using optimization criterion specified in “criterion_init”

  • criterion_init (str, optional, default: "mc_rows") – Optimization criterion for which the initial samples are optimized (e.g. “mc_rows”, “svd”, …)

  • criterion (str, optional, default: "coverage") – Optimization criterion for which the online optimization is performed (e.g. “coverage”, “mc_rows”, “svd”, …)

  • n_cpu (int, optional, dfault: 4) – Number of CPU cores to use

  • threshold (float, optional, default: 0.1) – Threshold between [0 … 1] of the maximal congruence factor. Elements where c > threshold * max(c) are included in the online optimization to select the next optimal coil position.

  • weights (list of float [2], optional, default: [0.5, 0.5]) – Weights of optimization criteria in case of multiple goal functions (e.g. fim_svd). Higher weight means higher importance for the respective criteria. By default both optimization criteria are weighted equally [0.5, 0.5].

  • eps0 (float, optional, default: 0.01) – First error threshold to terminate the online optimization. The normalized root mean square deviation is calculated between the current and the previous solution. If the error is lower than eps0 for 3 times in a row, the online optimization terminates and returns the results.

  • eps0_dist (float, optional, default: 1) – Second error threshold to terminate the online optimization. The geodesic distance in mm of the hotspot is calculated between the current and the previous solution. If the error is lower than eps0_dist for 3 times in a row, the online optimization terminates and returns the results.

  • exponent (float, optional, default: 5) – Exponent the congruence factor map is scaled c**exponent

  • perc (float, optional, default: 99) – Percentile the congruence factor map is normalized (between 0 and 100)

  • n_refit (int, optional, default: 0) – Number of refit iterations. No refit is applied if n_refit=0.

  • fun (function object, optional, default: pynibs.linear) – Function to use to determine the congruence factor (e.g. pynibs.linear, pynibs.sigmoid, …)

  • verbose (bool, optional, default: True) – Plot output messages

Returns

Results output file containing the coil positions and the congruence factor maps for every iteration

Return type

<file> .hdf5 file

pynibs.opt.workhorse_corr(idx_list, array, ele_idx_1)
pynibs.opt.workhorse_coverage(idx_list, array, x, y, ele_idx_1)

Determine coverage score (likelihood) for given zap indices in idx_list

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • x (ndarray of float [200 x n_ele]) – x-values of coverage distributions, defined in interval [0, 1] (element wise normalized electric field)

  • y (ndarray of float [200 x n_ele]) – y-values of coverage distributions (element wise probability of already included e-fields)

  • ele_idx_1 (ndarray of float [n_roi]) – Element indices for which the coverage optimization is performed for

Returns

res – Coverage score (likelihood) for given electric field combinations. Lower values indicate that the new zap fills a gap which was not covered before.

Return type

ndarray of float [n_combs]

pynibs.opt.workhorse_coverage_prepare(idx_list, array, zap_idx)

Prepares coverage calculation. Determines coverage distributions for elements in idx_list given the zaps in zap_idx

Parameters
  • idx_list (list [n_ele]) – Index lists of elements.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • zap_idx (ndarray of int) – Included zaps in coverage distribution.

Returns

  • x (ndarray of float [200 x n_ele]) – x-values of coverage distributions, defined in interval [0, 1] (element wise normalized electric field)

  • y (ndarray of float [200 x n_ele]) – y-values of coverage distributions (element wise probability of already included e-fields)

pynibs.opt.workhorse_dist(idx_list, array, ele_idx_1)

Determines distance score for given zap indices in idx_list.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the optimization is performed

Returns

res – Distance based score. Lower values indicate more equidistant sampling (better)

Return type

ndarray of float [n_combs]

pynibs.opt.workhorse_dist_mc(idx_list, array, ele_idx_1, ele_idx_2, mode='cols')

Determines distance score and mutual coherence for given zap indices in idx_list. If c_max_idx is given, the distance based score is calculated only for this element. The condition number however is optimized for all elements in array

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • mode (str, optional, default: "cols") – Set if the mutual coherence is calculated w.r.t. columns or rows (“cols”, “rows”)

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the dist optimization is performed for

  • ele_idx_2 (ndarray of float [n_ele]) – Element indices for which the mc optimization is performed for

Returns

  • res_dist (ndarray of float [n_combs]) – Distance based score. Lower values indicate more equidistant sampling (better)

  • res_mc (ndarray of float [n_combs]) – Mutual coherence. Lower values indicate more orthogonal e-field combinations (better)

pynibs.opt.workhorse_dist_svd(idx_list, array, ele_idx_1, ele_idx_2)

Determines distance score and condition number for given zap indices in idx_list. If c_max_idx is given, the distance based score is calculated only for this element. The condition number however is optimized for all elements in array

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the dist optimization is performed for

  • ele_idx_2 (ndarray of float [n_ele]) – Element indices for which the svd optimization is performed for

Returns

  • res_dist (ndarray of float [n_combs]) – Distance based score. Lower values indicate more equidistant sampling (better)

  • res_svd (ndarray of float [n_combs]) – Condition number. Lower values indicate more orthogonal e-field combinations (better)

pynibs.opt.workhorse_fim(idx_list, array, ele_idx_1, e_opt, c=None)

Determine difference between e-fields and optimal e-field determined using the Fisher Information Matrix.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_roi]) – Element indices for which the fim optimization is performed for

  • e_opt (ndarray of float [n_roi]) – Optimal electric field value(s) (target) determined by FIM method

  • c (ndarray of float [n_ele], optional, default: None) – Congruence factor map normalized to 1 (whole ROI) used to weight the difference between the optimal e-field and the candidate e-field. If None, no weighting is applied.

Returns

res – Difference between e-fields and optimal e-field.

Return type

ndarray of float [n_combs]

pynibs.opt.workhorse_fim_mc(idx_list, array, ele_idx_1, ele_idx_2, e_opt, c=None, mode='rows')

Determine difference between e-fields and optimal e-field determined using the Fisher Information Matrix and mutual coherence.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_roi_1]) – Element indices for which the fim optimization is performed for

  • ele_idx_2 (ndarray of float [n_roi_2]) – Element indices for which the mc optimization is performed for

  • e_opt (float) – Optimal electric field value (target) determined by FIM method

  • c (ndarray of float [n_ele], optional, default: None) – Congruence factor map normalized to 1 (whole ROI) used to weight the difference between the optimal e-field and the candidate e-field. If None, no weighting is applied.

Returns

  • res_fim (ndarray of float [n_combs]) – Difference between e-fields and optimal e-field.

  • res_mc (ndarray of float [n_combs]) – Mutual coherence. Lower values indicate more orthogonal e-field combinations (better)

pynibs.opt.workhorse_fim_svd(idx_list, array, ele_idx_1, ele_idx_2, e_opt, c=None)

Determine difference between e-fields and optimal e-field determined using the Fisher Information Matrix and condition number.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_roi_1]) – Element indices for which the fim optimization is performed for

  • ele_idx_2 (ndarray of float [n_roi_2]) – Element indices for which the svd optimization is performed for

  • e_opt (float) – Optimal electric field value (target) determined by FIM method

  • c (ndarray of float [n_ele], optional, default: None) – Congruence factor map normalized to 1 (whole ROI) used to weight the difference between the optimal e-field and the candidate e-field. If None, no weighting is applied.

Returns

  • res_fim (ndarray of float [n_combs]) – Difference between e-fields and optimal e-field.

  • res_svd (ndarray of float [n_combs]) – Condition number. Lower values indicate more orthogonal e-field combinations (better)

pynibs.opt.workhorse_mc(idx_list, array, ele_idx_1, mode='cols')

Determines mutual coherence for given zap indices in idx_list.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the optimization is performed

  • mode (str, optional, default: "cols") – Set if the mutual coherence is calculated w.r.t. columns or rows (“cols”, “rows”)

Returns

res – Mutual coherence. Lower values indicate more orthogonal e-field combinations (better)

Return type

ndarray of float [n_combs]

pynibs.opt.workhorse_smooth(idx_list, array, ele_idx_1)
pynibs.opt.workhorse_svd(idx_list, array, ele_idx_1)

Determines condition number for given zap indices in idx_list.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the optimization is performed

Returns

res – Condition number. Lower values indicate more orthogonal e-field combinations (better)

Return type

ndarray of float [n_combs]

pynibs.opt.workhorse_var(idx_list, array, ele_idx_1)
pynibs.opt.workhorse_variability(idx_list, array, ele_idx_1)

Determines variability score for given zap indices in idx_list.

Parameters
  • idx_list (list of lists [n_combs][n_zaps]) – Index lists of zaps containing different possible combinations. Usually only the last index changes.

  • array (ndarray of float [n_zaps x n_ele]) – Electric field for different coil positions and elements

  • ele_idx_1 (ndarray of float [n_ele]) – Element indices for which the optimization is performed

Returns

res – Condition number. Lower values indicate more orthogonal e-field combinations (better)

Return type

ndarray of float [n_combs]

pynibs.para module

pynibs.para.ResetSession()

Resets Paraview session (needed if multiple plots are generated successively)

pynibs.para.b2rcw(cmin_input, cmax_input)

BLUEWHITERED Blue, white, and red color map. This function is designed to generate a blue to red colormap. The color of the colorbar is from blue to white and then to red, corresponding to the data values from negative to zero to positive, respectively. The color white always correspondes to value zero. The brightness of blue and red will change according to your setting, so that the brightness of the color corresponded to the color of his opposite number. e.g. b2rcw(-3,6) is from light blue to deep red e.g. b2rcw(-3,3) is from deep blue to deep red

Parameters
  • cmin_input (float) – Minimum value of data

  • cmax_input (float) – Maximum value of data

Returns

newmap

Return type

nparray of float [N_RGB x 3]

pynibs.para.create_plot_settings_dict(plotfunction_type)

Creates a dictionary with default plotsettings.

Parameters

plotfunction_type (str) –

Plot function the dictionary is generated for:

  • ’surface_vector_plot’

  • ’surface_vector_plot_vtu’

  • ’volume_plot’

  • ’volume_plot_vtu’

Returns

  • ps (dict) – Dictionary containing the plotsettings:

  • axes (boolean) – Show orientation axes (TRUE / FALSE)

  • background_color (nparray [1 x 3]) – Set background color of exported image RGB (0…1)

  • calculator (str) – Format string with placeholder of the calculator expression the quantity to plot is modified with (e.g.: “{}^5”)

  • clip_coords (nparray of float [N_clips x 3]) – Coordinates of clip surface origins (x,y,z)

  • clip_normals (nparray of float [N_clips x 3]) – Surface normals of clip surfaces pointing in the direction where the volume is kept for clip_type = [‘clip’ …] (x,y,z)

  • clip_type (list of str) – Type of clipping:

    • ’clip’: cut geometry but keep volume behind

    • ’slice’: cut geometry and keep only the slice

  • coil_dipole_scaling (list [1 x 2]) – Specify the scaling type of the dipoles (2 entries):

    coil_dipole_scaling[0]:

    • ’uniform’: uniform scaling, i.e. all dipoles have the same size

    • ’scaled’: size scaled according to dipole magnitude

    coil_dipole_scaling[1]:

    • scalar scale parameter of dipole size

  • coil_dipole_color (str or list) – Color of the dipoles; either str to specify colormap (e.g. ‘jet’) or list of RGB values [1 x 3] (0…1)

  • coil_axes (boolean) – Plot coil axes visualizing the principle direction and orientation of the coil (Default: True)

  • colorbar_label (str) – Label of plotted data close to colorbar

  • colorbar_position (list of float [1 x 2]) – Position of colorbar (lower left corner) 0…1 [x_pos, y_pos]

  • colorbar_orientation (str) – Orientation of colorbar (‘Vertical’, ‘Horizontal’)

  • colorbar_aspectratio (int) – Aspectratio of colorbar (higher values make it thicker)

  • colorbar_titlefontsize (float) – Fontsize of colorbar title

  • colorbar_labelfontsize (float) – Fontsize of colorbar labels (numbers)

  • colorbar_labelformat (str) – Format of colorbar labels (e.g.: ‘%-#6.3g’)

  • colorbar_numberoflabels (int) – maximum number of colorbar labels

  • colorbar_labelcolor (list of float [1 x 3]) – Color of colorbar labels in RGB (0…1)

  • colormap (str or nparray) –

    if nparray [1 x 4*N]: custom colormap providing data and corresponding RGB values

    \begin{bmatrix}
 data_{1} & R_1 & G_1 & B_1  \\
 data_{2} & R_2 & G_2 & B_2  \\
 ...      & ... & ... & ...  \\
 data_{N} & R_N & G_N & B_N  \\
\end{bmatrix}

    if str: colormap of plotted data chosen from included presets:

    • ’Cool to Warm’,

    • ’Cool to Warm (Extended)’,

    • ’Blue to Red Rainbow’,

    • ’X Ray’,

    • ’Grayscale’,

    • ’jet’,

    • ’hsv’,

    • ’erdc_iceFire_L’,

    • ’Plasma (matplotlib)’,

    • ’Viridis (matplotlib)’,

    • ’gray_Matlab’,

    • ’Spectral_lowBlue’,

    • ’BuRd’

    • ’Rainbow Blended White’

    • ’b2rcw’

  • colormap_categories (boolean) – Use categorized (discrete) colormap

  • datarange (list [1 x 2]) – Minimum and Maximum of plotted datarange [MIN, MAX] (default: automatic)

  • domain_IDs (int or list of int) – Domain IDs

    surface plot: Index of surface where the data is plotted on (Default: 0)

    volume plot: Specify the domains IDs to show in plot (default: all) Attention! Has to be included in the dataset under the name ‘tissue’! e.g. for SimNIBS:

    • 1 -> white matter (WM)

    • 2 -> grey matter (GM)

    • 3 -> cerebrospinal fluid (CSF)

    • 4 -> skull

    • 5 -> skin

  • domain_label (str) – Label of the dataset which contains the domain IDs (default: ‘tissue_type’)

  • edges (boolean) – Show edges of mesh (TRUE / FALSE)

  • fname_in (str or list of str) – Filenames of input files, 2 possibilities:

    • .xdmf-file: filename of .xmdf (needs the corresponding .hdf5 file(s) in the same folder)

    • .hdf5-file(s): filename(s) of .hdf5 file(s) containing the data and the geometry. The data can be provided in the first hdf5 file and the geometry can be provided in the second file. However, both can be also provided in a single hdf5 file.

  • fname_png (str) – Name of output .png file (incl. path)

  • fname_vtu_volume (str) – Name of .vtu volume file containing volume data (incl. path)

  • fname_vtu_surface (str) – Name of .vtu surface file containing surface data (incl. path) (to distinguish tissues)

  • fname_vtu_coil (str) – Name of coil .vtu file (incl. path) (optional)

  • info (str) – Information about the plot the settings are belonging to

  • interpolate (boolean) – Interpolate data for visual smoothness (TRUE / FALSE)

  • NanColor (list of float [3]) – RGB color values for “Not a Number” values (range 0 … 1)

  • opacitymap (nparray) – Points defining the piecewise linear opacity transfer function (transparency) (default: no transparency) connecting data values with opacity (alpha) values ranging from 0 (max. transparency) to 1 (no transparency)

    \begin{bmatrix}
 data_{1} & opac_1 & 0.5 & 0  \\
 data_{2} & opac_2 & 0.5 & 0  \\
 ...      & ...   & ... & ...\\
 data_{N} & opac_N & 0.5 & 0  \\
\end{bmatrix}

  • plot_function (str) – Function the plot is generated with:

    • ’surface_vector_plot’

    • ’surface_vector_plot_vtu’

    • ’volume_plot’

    • ’volume_plot_vtu’

  • png_resolution (float) – Resolution parameter of output image (1…5)

  • quantity (str) – Label of magnitude dataset to plot

  • surface_color (nparray [1 x 3]) – Color of brain surface in RGB (0…1) for better visability of tissue borders

  • surface_smoothing (bool) – Smooth the plotted surface (True/False)

  • show_coil (boolean) – show coil if present in dataset as block termed ‘coil’ (Default: True)

  • vcolor (nparray of float [N_vecs x 3]) – Array containing the RGB values between 0…1 of the vector groups in dataset to plot

  • vector_mode (dict) – dict key determines the type how many vectors are shown: - ‘All Points’ - ‘Every Nth Point’ - ‘Uniform Spatial Distribution’

    dict value (int) is the corresponding number of vectors

    • ’All Points’ (not set)

    • ’Every Nth Point’ (every Nth vector is shown in the grid)

    • ’Uniform Spatial Distribution’ (not set)

  • view (list) – Camera position and angle [[3 x CameraPosition], [3 x CameraFocalPoint], [3 x CameraViewUp], 1 x CameraParallelScale]

  • viewsize (nparray [1 x 2]) – Set size of exported image in pixel [width x height] will be extra scaled by parameter png_resolution

  • vlabels (list of str) – Labels of vector datasets to plot (other present datasets are ignored)

  • vscales (list of float) – Scale parameters of vector groups to plot

  • vscale_mode (list of str [N_vecs x 1]) – List containing the type of vector scaling:

    • ’off’: all vectors are normalized

    • ’vector’: vectors are scaled according to their magnitudeeee

pynibs.para.crop_data_hdf5_to_datarange(ps)

Crops the data (quantity) in .hdf5 data file to datarange and overwrites the original .hdf5 data file pointed by the .xdmf file.

Parameters

ps (dict) – Plot settings dictionary created with create_plotsettings_dict(plot_function)

Returns

  • fn_hdf5 (str) – Filename (incl. path) of data .hdf5 file (read from .xmdf file)

  • <File> (.hdf5 file) – *_backup.hdf5 backup file of original .hdf5 data file

  • <File> .hdf5 file – Cropped data

pynibs.para.crop_image(fname_image, fname_image_cropped)

Remove surrounding empty space around an image. This implemenation assumes that the surrounding space has the same colour as the top leftmost pixel.

Parameters

fname_image (str) – Filename of image to be cropped

Returns

<File> – Cropped image file saved as “fname_image_cropped”

Return type

.png file

pynibs.para.surface_vector_plot(ps)

Generate plot with Paraview from data in .hdf5 file(s).

Parameters

ps (dict) – Plot settings dict initialized with create_plot_settings_dict(plotfunction_type=’surface_vector_plot’)

Returns

<File> – Generated plot

Return type

.png file

pynibs.para.surface_vector_plot_vtu(ps)

Generate plot with Paraview from data in .vtu file.

Parameters

ps (dict) – Plot settings dict initialized with create_plot_settings_dict(plotfunction_type=’surface_vector_plot_vtu’)

Returns

<File> – Generated plot

Return type

.png file

pynibs.para.volume_plot(ps)

Generate plot with Paraview from data in .hdf5 file.

Parameters

ps (dict) – Plot settings dict initialized with create_plot_settings_dict(plotfunction_type=’’volume_plot’’)

Returns

<File> – Generated plot

Return type

.png file

pynibs.para.volume_plot_vtu(ps)

Generate plot with Paraview from data in .vtu file.

Parameters

ps (dict) – Plot settings dict initialized with create_plot_settings_dict(plotfunction_type=’’volume_plot_vtu’’)

Returns

<File> – Generated plot

Return type

.png file

pynibs.para.write_vtu(fname, data_labels, points, connectivity, idx_start, data)

Writes data in tetrahedra centers into .vtu file, which can be loaded with Paraview.

Parameters
  • fname (str) – Name of .vtu file (incl. path)

  • data_labels (list with N_data str) – Label of each dataset

  • points (array of float [N_points x 3]) – Coordinates of vertices

  • connectivity (array of int [N_tet x 4]) – Connectivity of points forming tetrahedra

  • idx_start (int) – Smallest index in connectivity matrix, defines offset w.r.t Python indexing, which starts at ‘0’

  • *data (array(s) [N_tet x N_comp(N_data)]) – Arrays containing data in tetrahedra center multiple components per dataset possible e.g. [Ex, Ey, Ez]

Returns

<File> – Geometry and data information

Return type

.vtu file

pynibs.para.write_vtu_coilpos(fname_geo, fname_vtu)

Read dipole data of coil (position and magnitude of each dipole) from geo file and store it as vtu file.

Parameters
  • fname_geo (str) – .geo file from SimNIBS.

  • fname_vtu (str) – .vtu output file. Nodes and nodedata.

Returns

<File> – Magnetic dipoles of the TMS coil

Return type

.vtu file

pynibs.para.write_vtu_mult(fname, data_labels, points, triangles, tetrahedras, idx_start, *data)

Writes data in triangles and tetrahedra centers into .vtu file, which can be loaded with Paraview.

Parameters
  • fname (str) – Name of .vtu file (incl. path)

  • data_labels (list of str [N_data]) – Label of each dataset

  • points (nparray of float [N_points x 3]) – Coordinates of vertices

  • triangles (nparray of int [N_tri x 3]) – Connectivity of points forming triangles

  • tetrahedras (nparray of int [N_tri x 4]) – Connectivity of points forming tetrahedra idx_start: int smallest index in connectivity matrix, defines offset w.r.t python indexing, which starts at ‘0’

  • *data (nparray(s) [N_tet x N_comp(N_data)]) – Arrays containing data in tetrahedra center multiple components per dataset possible e.g. [Ex, Ey, Ez]

Returns

<File> – Geometry and data information

Return type

.vtu file

pynibs.postproc module

pynibs.postproc.congruence_factor_curveshift_kernel(e_curve, mep_curve)

Curve congruence (overlap) measure for multiple MEP curves per element. Determines the average displacement between the MEP curves. The congruence factor is weighted by median(E) and summed up. This favors elements which have greater E, as these are more likely to produce MEPs.

dE = \begin{bmatrix}
    dE_{11} & dE_{12} & ... & dE_{1n} \\
    dE_{21} & dE_{22} & ... & dE_{2n} \\
    ...   & ...   & ... & ...   \\
    dE_{n1} & dE_{n2} & ... & dE_{nn} \\
    \end{bmatrix}

-> congruence_factor ~ np.linalg.norm(dE)/median(E)/n_cond/2

Parameters
  • e_curve (list of nparray of float [n_cond]) – List over all conditions of electric field values corresponding to the mep amplitudes

  • mep_curve (list of nparray of float [n_cond]) – List over all conditions of mep values corresponding to the electric field

Returns

congruence_factor – Congruence factor for the n_cond electric field and MEP curves

Return type

float

pynibs.postproc.congruence_factor_curveshift_workhorse(elm_idx_list, mep, mep_params, e, n_samples=100)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list). n_samples are taken from fitted_mep, within the range of the mep object.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) - e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …]

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • n_samples (int, default=100) – Number of data points to generate discrete mep and e curves

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

pynibs.postproc.congruence_factor_curveshift_workhorse_stretch_correction(elm_idx_list, mep, mep_params, e, n_samples=100)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list). n_samples are taken from fitted_mep, within the range of the mep object.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) - e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …]

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - e.g.: len(e) = n_cond, - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • n_samples (int, default=100) – Number of data points to generate discrete mep and e curves

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

pynibs.postproc.congruence_factor_curveshift_workhorse_stretch_correction_new(mep, mep_params, e, n_samples=100, ref_idx=0)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list). n_samples are taken from fitted_mep, within the range of the mep object.

Parameters
  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) - e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …]

  • e (nparray of float [n_elm x n_cond]) – Electric field in elements

  • n_samples (int, default=100) – Number of data points to generate discrete mep and e curves

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_elm x 1]

pynibs.postproc.congruence_factor_curveshift_workhorse_stretch_correction_sign_new(mep, mep_params, e, n_samples=100, ref_idx=0)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list). n_samples are taken from fitted_mep, within the range of the mep object.

Parameters
  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) - e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …]

  • e (nparray of float [n_elm x n_cond]) – Electric field in elements

  • n_samples (int, default=100) – Number of data points to generate discrete mep and e curves

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_elm x 1]

pynibs.postproc.congruence_factor_curveshift_workhorse_stretch_correction_variance(elm_idx_list, mep, mep_params, e, n_samples=100)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list). n_samples are taken from fitted_mep, within the range of the mep object.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) - e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …]

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - e.g.: len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • n_samples (int, default=100) – Number of data points to generate discrete mep and e curves

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

pynibs.postproc.congruence_factor_variance_sign_workhorse(elm_idx_list, mep, mep_params, e)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

pynibs.postproc.congruence_factor_variance_workhorse(elm_idx_list, mep, mep_params, e, old_style=True)

Worker function for congruence factor computation - call from multiprocessing.pool Calculates congruence factor for e = (E_mag, E_norm and/or E_tan) for given zaps and elements.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • old_style (boolean (default: True)) – True: Weight var(x_0_prime(r) with mean(e(r) * mean(Stimulator Intensity), taken from MEP object False: Weight var(x_0_prime(r) with mean(E(r)), taken from e

Returns

congruence_factor – Congruence factor in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

pynibs.postproc.dvs_likelihood(params, x, y, verbose=True, normalize=False, bounds=[(1, 2), (1, 2)])
pynibs.postproc.e_cog_workhorse(elm_idx_list, mep, mep_params, e)

Worker function for electric field center of gravity (e_cog) )computation after Opitz et al. (2013) [1] - call from multiprocessing.pool. Calculates the e_cog for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The electric field is weighted by the mean MEP amplitude (turning point of the sigmoid) and summed up. The computations are parallelized in terms of element indices (elm_idx_list).

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - e.g.: len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

Returns

e_cog – RSD inverse in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

Notes

1

Opitz, A., Legon, W., Rowlands, A., Bickel, W. K., Paulus, W., & Tyler, W. J. (2013). Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage, 81, 253-264.

pynibs.postproc.e_focal_workhorse(elm_idx_list, e)

Worker function to determine the site of stimulation after Aonuma et al. (2018) [1] - call from multiprocessing.pool Calculates the site of stimulation for e = (E_mag, E_norm and/or E_tan) for given zaps and elements by multiplying the electric fields with each other. The computations are parallelized in terms of element indices (elm_idx_list).

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - e.g.: len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

Returns

e_focal – Focal electric field in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

Notes

1

Aonuma, S., Gomez-Tames, J., Laakso, I., Hirata, A., Takakura, T., Tamura, M., & Muragaki, Y. (2018). A high-resolution computational localization method for transcranial magnetic stimulation mapping. NeuroImage, 172, 85-93.

pynibs.postproc.extract_condition_combination(fn_config_cfg, fn_results_hdf5, conds, fn_out_prefix)

Extract and plot congruence factor results for specific condition combinations from permutation analysis.

Parameters
  • fn_config_cfg (str) – Filename of config file the permutation study was cinducted with (e.g. …/probands/29965.48/results/electric_field/22_cond_coil_corrected/5-of-22_cond_coil_corrected_Weise.cfg

  • fn_results_hdf5 (str) – Filename of results file generated by 00_run_c_standard_compute_all_permutations.py containing congruence factors and condition combinations. (e.g. /data/pt_01756/probands/29965.48/results/congruence_factor/22_cond_coil_corrected/2_of_20_cond/ simulations/results.hdf5)

  • conds (list of str [n_cond]) – List containing condition combinations to extract and plot. (e.g. [‘P_0’, ‘I_225’, ‘M1_0’, ‘I_675’, ‘P_225’])

  • fn_out_prefix (str) – Prefix of output filenames of *_data.xdmf, *_data.hdf5 and *_geo.hdf5

Returns

  • <fn_out_prefix_data.xdmf> (.xdmf file) – Output file linking *_data.hdf5 and *_geo.hdf5 file to plot in paraview.

  • <fn_out_prefix_data.hdf5> (.hdf5 file) – Output .hdf5 file containing the data.

  • <fn_out_prefix_geo.xdmf> (.hdf5 file) – Output .hdf5 file containing the geometry information.

pynibs.postproc.rsd_inverse_workhorse(elm_idx_list, mep, e)

Worker function for RSD inverse computation after Bungert et al. (2017) [1]- call from multiprocessing.pool Calculates the RSD inverse for e = (E_mag, E_norm and/or E_tan) for given zaps and elements. The computations are parallelized in terms of element indices (elm_idx_list).

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - e.g.: len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

Returns

rsd_inv – RSD inverse in each element specified in elm_idx_list and for each input dataset

Return type

nparray of float [n_roi, n_datasets]

Notes

1

Bungert, A., Antunes, A., Espenhahn, S., & Thielscher, A. (2016). Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position. Cerebral Cortex, 27(11), 5083-5094.

pynibs.postproc.single_fit(x, y, fun)

Performs a single fit and returns fit object

Parameters
  • x (ndarray of float) – x-values

  • y (ndarray of float) – y-values

  • fun (function object) – Function object used to fit

Returns

fit – Fit object

Return type

gmodel fit object

pynibs.postproc.stimulation_threshold(elm_idx_list, mep, mep_params, n_samples, e, c_factor_percentile=95, mep_threshold=0.5, c_factor=None, c_function=None, t_function=None)

Computes the stimulation threshold in terms of the electric field in [V/m]. The threshold is defined as the electric field value where the mep exceeds mep_threshold. The average value is taken over all mep curves in each condition and over an area where the congruence factor exceeds c_factor_percentile.

Parameters
  • elm_idx_list (nparray [chunksize]) – List of element indices, the congruence factor is computed for

  • mep (list of Mep object instances [n_cond]) – List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

  • mep_params (nparray of float [n_mep_params_total]) – List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

  • n_samples (int) – Number of data points to generate discrete mep and e curves

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • c_factor_percentile (float) – Percentile of the c_factor taken into account for the threshold evaluation. Only c_factors are considered exceeding this.

  • mep_threshold (float) – MEP value in [mV], which has to be exceeded for threshold definition

  • c_factor (nparray of float [n_roi, n_datasets]) – Congruence factor in each element specified in elm_idx_list and for each input dataset

  • c_function (fun) – Defines the function to use during c_gpc to calculate the congruence factor - congruence_factor_curveshift_workhorse: determines the average curve shift (without stretch correction) - congruence_factor_curveshift_workhorse_stretch_correction: determines the average curve shift (with stretch correction) - congruence_factor_curveshift_workhorse_stretch_correction_variance: determines the average curve shift (with stretch correction and variance) - congruence_factor_variance_workhorse: evaluates the variance of the shifting and stretching parameters

  • t_function (fun) – Defines the function to determine the stimulation_threshold - stimulation_threshold_mean_mep_threshold: uses mep_threshold to determine the corresponding e_threshold over all conditions and takes the average values as the stimulation threshold - stimulation_threshold_sigmoid: Fits a new sigmoid using all datapoints in the mep-vs-E space and evaluates the threshold from the turning point or the intersection of the derivative in the crossing point with the e-axis

Returns

stim_threshold_avg – Average stimulation threshold in [V/m] where c_factor is greater than c_factor_percentile

Return type

float

pynibs.postproc.stimulation_threshold_intensity(mep_curve, intensities, mep_threshold)

Determines the stimulation threshold of one particular condition (usually the most sensitive e.g. M1-45). The stimulation threshold is the stimulator intensity value in [A/us] where the mep curves exceed the value of mep_threshold (in [mV]).

Parameters
  • mep_curve (list [1] of nparray of float [n_samples]) – MEP curve values for every conditions

  • intensities (list [1] of nparray of float [n_samples]) – To the MEP values corresponding stimulator intensities in [A/us]

  • mep_threshold (float) – MEP value in [mV], which has to be exceeded for threshold definition

Returns

stim_threshold_avg – Average stimulation threshold in [V/m] where c_factor is greater than c_factor_percentile

Return type

float

pynibs.postproc.stimulation_threshold_mean_mep_threshold(elm_idx, mep_curve, intensities, e, mep_threshold)

Determines the stimulation threshold by calculating the average electric field over all conditions, where the mep curves exceed the value of mep_threshold (in [mV]).

Parameters
  • elm_idx (list [n_datasets] of nparray of int [n_elements]) – Element indices where the congruence factor exceeds a certain percentile (defined during the call of stimulation_threshold())

  • mep_curve (list [n_conditions] of nparray of float [n_samples]) – MEP values for every conditions

  • intensities (list [n_conditions] of nparray of float [n_samples]) – To the MEP values corresponding stimulator intensities in [A/us]

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • mep_threshold (float) – MEP value in [mV], which has to be exceeded for threshold definition

Returns

stim_threshold_avg – Average stimulation threshold in [V/m] where c_factor is greater than c_factor_percentile

Return type

float

pynibs.postproc.stimulation_threshold_sigmoid(elm_idx, mep_curve, intensities, e, mep_threshold)

Determines the stimulation threshold by calculating an equivalent sigmoid over all conditions. The stimulation threshold is the electric field value where the mep curves exceed the value of mep_threshold (in [mV]).

Parameters
  • elm_idx (list [n_datasets] of nparray of int [n_elements]) – Element indices where the congruence factor exceeds a certain percentile (defined during the call of stimulation_threshold())

  • mep_curve (list [n_conditions] of nparray of float [n_samples]) – MEP curve values for every conditions

  • intensities (list [n_conditions] of nparray of float [n_samples]) – To the MEP values corresponding stimulator intensities in [A/us]

  • e (list of list of nparray of float [n_cond][n_datasets][n_elm]) – Tuple of n_datasets of the electric field to compute the congruence factor for, e.g. (e_mag, e_norm, e_tan) Each dataset is a list over all conditions containing the electric field component of interest - len(e) = n_cond - len(e[0]) = n_comp (e.g: e_mag = e[0]))

  • mep_threshold (float) – MEP value in [mV], which has to be exceeded for threshold definition

Returns

stim_threshold_avg – Average stimulation threshold in [V/m] where c_factor is greater than c_factor_percentile

Return type

float

pynibs.regression module

class pynibs.regression.Element(x, y, ele_id, fun=<function sigmoid4>, score_type='R2', select_signed_data=False, constants=None)

Bases: object

Fit Element object class

Methods

calc_score()

Determine goodness-of-fit score

run_fit([max_nfev])

Perform data fit

run_select_signed_data()

Selects positive or negative data by performing an initial linear fit by comparing the resulting p-values, slopes and R2 values.

set_constants(value)

Sets constants in self.constants and gmodel instance

set_init_vals(value)

Sets initial values in self.init_vals and gmodel instance

set_limits(value)

Sets limits in self.limits and gmodel instance

set_random_init_vals()

Set random initial values

setup_model()

Setup model parameters (limits, initial values, etc.

calc_score()

Determine goodness-of-fit score

run_fit(max_nfev=1000)

Perform data fit

run_select_signed_data()

Selects positive or negative data by performing an initial linear fit by comparing the resulting p-values, slopes and R2 values. Either positive or negative data (w.r.t. x-axis) yielding a fit with a p-value < 0.05, a positive slope and the higher R2 value is used and the remaining data with the other sign is omitted from the analysis

set_constants(value)

Sets constants in self.constants and gmodel instance

set_init_vals(value)

Sets initial values in self.init_vals and gmodel instance

set_limits(value)

Sets limits in self.limits and gmodel instance

set_random_init_vals()

Set random initial values

setup_model()

Setup model parameters (limits, initial values, etc. …)

pynibs.regression.fit_elms(elm_idx_list, e_matrix, mep, zap_idx=None, fun=<function sigmoid4>, init_vals=None, limits=None, log_scale=False, constants=None, max_nfev=None, bad_elm_idx=None, score_type='R2', verbose=False)

Workhorse for Mass-univariate nonlinear regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise r2 score is returned.

Parameters
  • elm_idx_list (list of int or ndarray) – List containing the element indices the fit is performed for

  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • zap_idx (np.ndarray [n_zaps], optional, default: None) – Indices of zaps the congruence factor is calculated with (default: all)

  • fun (str) – A function name of pynibs.exp.Mep (exp0, sigmoid)

  • init_vals (np.ndarray of dict) – Dictionary containing the initial values for each element as ndarray [len(elm_idx_list)]. The keys are the free parameters of fun, e.g. “x0”, “amp”, etc

  • limits (pd.DataFrame) – Dictionary containing the limits of each parameter for each element e.g.: limits[“x0”][elm_idx] = [min, max]

  • log_scale (bool, optional, default: False) – Log-transform data before fit (necessary for functions defined in the log domain)

  • constants (dict of <string>:<num>, optional, default: None) – key:value pair of model parameters not to optimize.

  • max_nfev (int, default: None) – Max fits, passed to model.fit() as max_nfev=max_nfev*len(x).

  • bad_elm_idx (ndarray) – Indices of elements not to fit, with indices corresponding to indices (not values) of elm_idx_list

  • score_type (str, optional, default: "R2") – Goodness of fit measure; Choose SR for nonlinear fits and R2 or SR for linear fits: - “R2”: R2 score (Model variance / Total variance) [0, 1] for linear models; 0: bad fit; 1: perfect fit - “SR”: Relative standard error of regression (1 - Error 2-norm / Data 2-norm) [-inf, 1]; 1: perfect fit

  • mask_e_field (ndarray of bool [n_zaps x n_ele], optional, default: None) – Mask indicating for which e-field (and mep) values the fit is performed for. Changes for normal component in each element because of the sign and p-values. If None, all data is used in each element.

  • verbose (bool, optional, default: False) – Print verbosity information

Returns

  • r2 (ndarray of float [n_roi, 1]) – R2 for each element in elm_idx_list

  • best_values (ndarray of object) – Fit parameters returned from the optimizer

pynibs.regression.get_bad_elms(x, y, method='lstsq', verbose=False)

This does an element-wise fast linear regression fit to identify bad elements. Bad is defined here as a negative slope.

xndarray of float [n_zaps x n_ele]

Electric field matrix

yndarray of float [n_zaps]

Motor evoked potentials for every stimulation

methodstr, default: “lstsq”

Which method to use. (numpy.linalg.)lstsq, (scipy.stats.)linregress, or pinv

verbosebool, optional, default: False

Print verbosity information

Returns
idx: ndarray

Indices of bad elements

pynibs.regression.get_model_init_values(fun, elm_idx_list, e_matrix, mep, mask_e_field=None, rem_empty_hints=True)

Calc appropriate init, limit, and max values for models fits depending on the data. If negative and positive x-data is present in case of e.g. normal component values are set according to the side (positive or negative) where more values are present. When more positive x-axis values are present, negative x-axis values will be ignored. When more negative x-axis values are present, the absolute values will be taken and the positive values are ignored.

Only parameters for sigmoid* are optimized.

Parameters
  • fun (pyfempp.exp.Mep) – IO curve function object

  • elm_idx_list (np.ndarray of int) – Array containing the element indices the fit is performed for

  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • mask_e_field (ndarray of bool [n_zaps x n_ele], optional, default: None) – Mask indicating for which e-field (and mep) values the fit is performed for. Changes for normal component in each element because of the sign and p-values. If None, all data is used in each element.

  • rem_empty_hints (bool, default: True) – Remove any non-filled param hints from limits dict.

Returns

  • log_scale (bool) – Log scale

  • limits (dict of list [n elm_index_list]) – Element-wise limit values for function fitting.

  • init_vals (dict of list [n elm_index_list]) – Element-wise init values for function fitting.

  • max_vals_refit (dict of list [n elm_index_list]) – Element-wise perturbation range for refitting function.

pynibs.regression.init(l, zap_lists, res_fn)

Pool init function to use with regression_nl_hdf5_single_core_write

Parameters
  • l (multiprocessing.Lock()) –

  • zap_lists (list of list of int) – Which zaps to compute.

  • res_fn (str) – .hdf5 fn

pynibs.regression.logistic_regression()

Some ideas on how to improve regression approach

  1. De-log data

Data range has to be transformed to a reasonable range. For a full sigmoid, -10:10 looks ok

sig <- function(z) {

return( 1 / (1 + exp(-z)))

}

desig <- function(x) {

return(- log((1/x) - 1))

}

This might be a reasonable fast approach, but the parameter range has to be estimated. Maybe remove some outliters?

2. fit logistic regression to raw data scipy.optimize provides fit_curve(), which does OLS-ish fitting to a given function https://stackoverflow.com/questions/54376900/fit-sigmoid-curve-in-python

I expect this to be rather slow.

3. Use the sklearn logistic_regression classifyer and access raw fit data The logistic_regression is implemented as a classifyer, maybe it’s possible to use it’s regression fit results. Implementation should be pretty fast.

pynibs.regression.nl_hdf5(elm_idx_list=None, fn_reg_hdf5=None, qoi_path_hdf5=None, e_matrix=None, mep=None, fun=<function sigmoid4>, zap_idx=None, n_cpu=4, con=None, n_refit=50, return_fits=False, score_type='R2', verbose=False, pool=None, refit_discontinuities=True)

Mass-univariate nonlinear regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise r2 score is returned. The function reads the precomputed array of E-MEP data from an .hdf5 file.

Parameters
  • elm_idx_list (ndarray of int) – List containing the element indices the fit is performed for

  • fn_reg_hdf5 (str) – Filename (incl. path) containing the precomputed E-MEP dataframes

  • qoi_path_hdf5 (Union[str, list[str]]) – Path in .hdf5 file to dataset of electric field qoi e.g.: [“E”, “E_norm”, “E_tan”]

  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • zap_idx (np.array [n_zaps], optional, default: None) – Indices of zaps the congruence factor is calculated with (default: all)

  • fun (pynibs.exp.Mep function) – A function of pynibs.exp.Mep (exp0, sigmoid)

  • n_cpu (int) – Number of threads

  • con (ndarray of float [n_roi, 3 or 4], optional, default: None) – Connectivity matrix of ROI (needed in case of refit because of discontinuity check)

  • n_refit (int, optional, default: 50) – Maximum number of refits of zero elements. No refit is applied in case of n_refit = 0.

  • return_fits (bool, optional, default: False) – Return fit objects containing the parameter estimates

  • score_type (str, optional, default: "R2") – Error measure of fit: - “R2”: R2 score (Model variance / Total variance); linear fits: [0, 1], 1 … perfect fit - “SR”: Relative standard error of regression (1 - Error 2-norm / Data 2-norm); [-Inf, 1], 1 … perfect fit

  • verbose (bool, optional, default: False) – Plot output messages

  • pool (multiprocessing.Pool()) – pool instance to use.

  • refit_discontinuities (bool, optional, default: True) – Run refit for discontinuous elements at the end

Returns

r2 – R2 for each element in elm_idx_list

Return type

ndarray of float [n_roi, n_qoi]

pynibs.regression.nl_hdf5_single_core(zap_idx, elm_idx_list, fn_reg_hdf5=None, qoi_path_hdf5=None, e_matrix=None, mep=None, fun=<function sigmoid4>, con=None, n_refit=50, return_fits=False, constants=None, verbose=False, seed=None, rem_bad_elms=True, return_e_field_stats=True)

Mass-univariate nonlinear regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise r2 score is returned. The function reads the precomputed array of E-MEP data from an .hdf5 file.

Parameters
  • elm_idx_list (np.ndarray of int) – List containing the element indices the fit is performed for

  • fn_reg_hdf5 (str) – Filename (incl. path) containing the precomputed E-MEP dataframes

  • qoi_path_hdf5 (str or list of str) – Path in .hdf5 file to dataset of electric field qoi e.g.: [“E”, “E_norm”, “E_tan”]

  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • zap_idx (np.array [n_zaps], optional, default: None) – Indices of zaps the congruence factor is calculated with (default: all)

  • fun (function object) – A function of pynibs.exp.Mep (exp0, sigmoid)

  • con (ndarray of float [n_roi, 3 or 4], optional, default: None) – Connectivity matrix of ROI (needed in case of refit because of discontinuity check)

  • n_refit (int, optional, default: 50) – Maximum number of refits of zero elements. No refit is applied in case of n_refit = 0.

  • return_fits (bool, optional, default: False) – Return fit objects containing the parameter estimates

  • constants (dict of <string>:<num>, optional, default: None) – key:value pair of model parameters not to optimize.

  • verbose (bool, optional, default: False) – Plot output messages

  • seed (int, optional, default: None) – Seed to use.

  • rem_bad_elms (bool, default: True) – Remove elements based on a fast linear regression slope estimation

  • return_e_field_stats (bool, default: True) – Return some stats on the efield variance

Returns

r2 – R2 for each element in elm_idx_list

Return type

ndarray of float [n_roi, n_qoi]

pynibs.regression.nl_hdf5_single_core_write(i, elm_idx_list, fn_reg_hdf5=None, qoi_path_hdf5=None, e_matrix=None, mep=None, fun=<function sigmoid4>, con=None, n_refit=50, return_fits=False, constants=None, verbose=False, seed=None, stepdown=False, score_type='R2', return_progress=False, geo=None)
pynibs.regression.regress_data(e_matrix, mep, elm_idx_list=None, element_list=None, fun=<function sigmoid4>, n_cpu=4, con=None, n_refit=50, zap_idx=None, return_fits=False, score_type='R2', verbose=False, pool=None, refit_discontinuities=True, select_signed_data=False)

Mass-univariate nonlinear regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise r2 score is returned. The function reads the precomputed array of E-MEP data from an .hdf5 file.

Parameters
  • e_matrix (ndarray of float [n_zaps x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • elm_idx_list (ndarray of int) – List containing the element indices the fit is performed for

  • element_list (list of Element object instances [n_ele], optional, default: None) – List containing the already initialized element object instances. Initialization will be skipped if provided.

  • fun (pynibs.exp.Mep function) – A function of pynibs.exp.Mep (exp0, sigmoid)

  • n_cpu (int) – Number of threads, If n_cpu=1 is passed, no parallel pool will be opened and all calculations are done in serial

  • con (ndarray of float [n_roi, 3 or 4], optional, default: None) – Connectivity matrix of ROI (needed in case of refit because of discontinuity check)

  • n_refit (int, optional, default: 50) – Maximum number of refits of zero elements. No refit is applied in case of n_refit = 0.

  • zap_idx (ndarray of int, optional, default: None) – Which e/mep to use.

  • return_fits (bool, optional, default: False) – Return fit objects containing the parameter estimates

  • score_type (str, optional, default: "R2") – Error measure of fit: - “R2”: R2 score (Model variance / Total variance); linear fits: [0, 1], 1 … perfect fit - “SR”: Relative standard error of regression (1 - Error 2-norm / Data 2-norm); [-Inf, 1], 1 … perfect fit

  • verbose (bool, optional, default: False) – Plot output messages

  • pool (multiprocessing.Pool()) – pool instance to use.

  • refit_discontinuities (bool, optional, default: True) – Run refit for discontinuous elements at the end

Returns

  • score (ndarray of float [n_roi, n_qoi]) – score for each element

  • best_values (list of dict [n_ele]) – List of parameter fits

pynibs.regression.ridge_from_hdf5(elm_idx_list, fn_reg_hdf5, qoi_path_hdf5, zap_idx=None)

Mass-univariate ridge regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise sklearn.metrics.regression.r2_score is returned. The function reads the precomputed array of E-MEP data from an .hdf5 file. Always uses all cores of a machine!

elm_idx_listlist of int

List containing the element indices the fit is performed for

fn_hdf5str

Filename (incl. path) containing the precomputed E-MEP dataframes

qoi_path_hdf5str

Path in .hdf5 file to dataset of electric field qoi

zap_idxnp.ndarray [n_zaps], optional, default: None

Indices of zaps the congruence factor is calculated with (default: all)

Returns

r2 – R^2 for each element in elm_idx_list

Return type

nparray of float [n_roi, n_datasets]

pynibs.regression.sing_elm_fitted(elm_idx_list, mep_lst, mep_params, e, alpha=1000, n_samples=100)

Mass-univariate ridge regressions on fitted MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise sklearn.metrics.regression.r2_score is returned.

elm_idx_list: nparray [chunksize]

List of element indices, the congruence factor is computed for

mep_lst: list of Mep object instances [n_cond]

List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

mep_params: nparray of float [n_mep_params_total]

List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

e: nparray of float with e.shape == (n_elm, n_cond, n_qoi)

array of the electric field to compute the r2 factor for, e.g. (e_mag, e_norm, e_tan)

n_samplesint, default=100

Number of data points to generate discrete mep and e curves

Returns

r2 – R^2 for each element in elm_idx_list

Return type

nparray of float [n_roi, n_datasets]

pynibs.regression.sing_elm_raw(elm_idx_list, mep_lst, mep_params, e, alpha=1000)

Mass-univariate ridge regressions on raw MEP_{AMP} ~ E. That is, for each element in elm_idx_list, it’s E (mag | norm | tan) for each zap regressed on the raw MEP amplitude. An element wise sklearn.metrics.regression.r2_score is returned.

elm_idx_list: nparray [chunksize]

List of element indices, the congruence factor is computed for

mep: list of Mep object instances [n_cond]

List of fitted Mep object instances for all conditions (see exp.py for more information of Mep class)

mep_params: nparray of float [n_mep_params_total]

List of all mep parameters of curve fits used to calculate the MEP (accumulated into one array) (e.g.: [mep_#1_para_#1, mep_#1_para_#2, mep_#1_para_#3, mep_#2_para_#1, mep_#2_para_#1, …])

e: nparray of float with e.shape == (n_elm, n_cond, n_qoi)

array of the electric field to compute the r2 factor for, e.g. (e_mag, e_norm, e_tan)

Returns

r2 – R^2 for each element in elm_idx_list

Return type

nparray of float [n_roi, n_datasets]

pynibs.regression.stepdown_approach(zap_idx, elm_idx_list, fn_reg_hdf5=None, qoi_path_hdf5=None, e_matrix=None, mep=None, fun=<function sigmoid4>, con=None, n_refit=50, return_fits=False, constants=None, verbose=False, seed=None, rem_bad_elms=True, return_e_field_stats=True, score_type='R2', return_progress=False, smooth_data=True, geo=None)

Mass-univariate nonlinear regressions on raw MEP_{AMP} ~ E in a stepdown manner to speed up computation.

Initially, one set of fits is done for the complete dataset. Afterwards, the best 1% of the elements are used

as initial fitting parameters for their neighboring elements. Then, neighboring elements are fitted accordingly and iterativley. Finally, discontinuous elements are refitted until a smooth map is found or n_refit is hit.

Can be sped up with rem_bad_elms that computes a fast linear fit to identify elements with a negative slope.

The function reads the precomputed array of E-MEP data from an .hdf5 file.

Parameters
  • elm_idx_list (np.ndarray of int) – List containing the element indices the fit is performed for

  • fn_reg_hdf5 (str) – Filename (incl. path) containing the precomputed E-MEP dataframes

  • qoi_path_hdf5 (str or list of str) – Path in .hdf5 file to dataset of electric field qoi e.g.: [“E”, “E_norm”, “E_tan”]

  • e_matrix (ndarray of float [n_zaps x n_ele] | [n_zapidx x n_ele]) – Electric field matrix

  • mep (ndarray of float [n_zaps]) – Motor evoked potentials for every stimulation

  • zap_idx (np.array [n_zaps], optional, default: None) – Indices of zaps the congruence factor is calculated with (default: all)

  • fun (function object) – A function of pynibs.exp.Mep (exp0, sigmoid)

  • con (ndarray of float [n_elm_roi, 3 or 4], optional, default: None) – Connectivity matrix of ROI (needed in case of refit because of discontinuity check)

  • n_refit (int, optional, default: 50) – Maximum number of refits of zero elements. No refit is applied in case of n_refit = 0.

  • return_fits (bool, optional, default: False) – Return fit objects containing the parameter estimates

  • constants (dict of <string>:<num>, optional, default: None) – key:value pair of model parameters not to optimize.

  • verbose (bool, optional, default: False) – Plot output messages

  • seed (int, optional, default: None) – Seed to use.

  • rem_bad_elms (bool, default: True) – Remove elements based on a fast linear regression slope estimation

  • return_e_field_stats (bool, default: True) – Return some stats on the efield variance

Returns

r2ndarray of float [n_roi, n_qoi]

R2 for each element in elm_idx_list

best_values: list of dict, optional

fit information

statsdict, optional
’mc’: float, optional

Mutual coherence for e fields

’sv_rat’float, optional

SVD singular value ratio

progress : cmaps for each step

Return type

dict

pynibs.regression.workhorse_element_init(ele_id, e_matrix, mep, fun, score_type, select_signed_data, constants)

Workhorse to initialize Elements.

pynibs.regression.workhorse_element_run_fit(element, max_nfev=10)

Workhorse to run single Element fit. If status is False, the element will not be fitted.

pynibs.regression.write_regression_hdf5(fn_exp_hdf5, fn_reg_hdf5, qoi_path_hdf5, qoi_phys, e_results_folder, qoi_e, roi_idx, conds_exclude)

Reads the stimulation intensities from the experiment.hdf5 file. Reads the qoi from the experiment.hdf5 file. Reads the electric fields from the electric field folder. Weights the electric field voxel wise with the respective intensities and writes an .hdf5 file containing the preprocessed data (pandas dataframe).

fn_exp_hdf5: str

Filename of the experiment.hdf5 file

fn_reg_hdf5: str

Filename of output regression.hdf5 file

qoi_path_hdf5: str

Path in experiment.hdf5 file pointing to the pandas dataframe containing the qoi (e.g.: “phys_data/postproc/EMG”)

qoi: str

Name of QOI the congruence factor is calculated with (e.g.: “p2p”)

fn_e_results: str

Folder containing the electric fields (e.g.: “/data/pt_01756/probands/13061.30/results/electric_field/1”)

qoi_e: str or list of str

Quantities of the electric field used to calculate the congruence factor (e.g. [“E”, “E_norm”, “E_tan”] Has to be included in e.hdf5 -> e.g.: “data/midlayer/roi_surface/1/E”

roi_idx: int

ROI index

conds_exclude: str or list of str

Conditions to exclude

Returns

<File> – File containing the intensity (current) scaled E-fields of the conditions in the ROI. Saved in datasets with the same name as qoi_e [“E”, “E_norm”, “E_tan”]

Return type

.hdf5 file

pynibs.roi module

class pynibs.roi.RegionOfInterestSurface

Bases: object

Region of interest (surface)

node_coord_up

Coordinates (x,y,z) of upper surface nodes

Type

nparray [N_points x 3]

node_coord_mid

Coordinates (x,y,z) of middle surface nodes

Type

nparray [N_points x 3]

node_coord_low

Coordinates (x,y,z) of lower surface nodes

Type

nparray [N_points x 3]

node_number_list

Connectivity matrix of triangles

Type

nparray [N_points x 3]

delta

Distance parameter between WM and GM (0 -> WM, 1 -> GM)

Type

float

tet_idx_tri_center_up

Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the upper surface are lying in

Type

nparray [N_points]

tet_idx_tri_center_mid

Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the middle surface are lying in

Type

nparray [N_points]

tet_idx_tri_center_low

Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the lower surface are lying in

Type

nparray [N_points]

tet_idx_node_coord_mid

Tetrahedra indices of TetrahedraLinear object instance where the nodes of the middle surface are lying in

Type

nparray [N_tri]

tri_center_coord_up

Coordinates of roi triangle center of upper surface

Type

nparray [N_tri x 3]

tri_center_coord_mid

Coordinates of roi triangle center of middle surface

Type

nparray [N_tri x 3]

tri_center_coord_low

Coordinates of roi triangle center of lower surface

Type

nparray [N_tri x 3]

fn_mask

Filename for surface mask in subject space. .mgh file or freesurfer surface file.

Type

string

fn_mask_avg

Filename for .mgh mask in fsaverage space. Absolute path or relative to mesh folder.

Type

string

fn_mask_nii

Filename for .nii or .nii.gz mask. Absolute path or relative to mesh folder.

Type

string

X_ROI

Region of interest [Xmin, Xmax], whole X range if empty [0,0] or None (left - right)

Type

list of float

Y_ROI

Region of interest [Ymin, Ymax], whole Y range if empty [0,0] or None (anterior - posterior)

Type

list of float

Z_ROI

Region of interest [Zmin, Zmax], whole Z range if empty [0,0] or None (inferior - superior)

Type

list of float

template

‘MNI’, ‘fsaverage’, ‘subject’

Type

str

center

Center coordinates for spherical ROI in self.template space

Type

list of float

radius

Radius in [mm] for spherical ROI

Type

float

gm_surf_fname

Filename(s) of GM surface generated by freesurfer (lh and/or rh) (e.g. in mri2msh: …/fs_ID/surf/lh.pial)

Type

str or list of str

wm_surf_fname

Filename(s) of WM surface generated by freesurfer (lh and/or rh) (e.g. in mri2msh: …/fs_ID/surf/lh.white)

Type

str or list of str

layer

Define the number of layers: - 1: one layer - 3: additionally upper and lower layers are generated around the central midlayer

Type

int

Notes

Initialization:

roi = RegionOfInterestSurface()

Methods

determine_element_idx_in_mesh(msh)

Determines tetrahedra indices of msh where the triangle center points of upper, middle and lower surface and the nodes of middle surface are lying in.

make_GM_WM_surface([gm_surf_fname, ...])

Generating a surface between WM and GM in a distance of delta 0...1 for ROI, given by Freesurfer mask or coordinates.

project_on_midlayer(target[, verbose])

Project a coordinate on the nearest midlayer node

subsample([dist, fn_sphere])

Subsample ROI surface and return element indices

determine_element_idx_in_mesh(msh)

Determines tetrahedra indices of msh where the triangle center points of upper, middle and lower surface and the nodes of middle surface are lying in.

Parameters

msh (object) – Object instance of TetrahedraLinear class

Returns

  • RegionOfInterestSurface.tet_idx_tri_center_up (nparray [N_points]) – Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the upper surface are lying in

  • RegionOfInterestSurface.tet_idx_tri_center_mid (nparray [N_points]) – Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the middle surface are lying in

  • RegionOfInterestSurface.tet_idx_tri_center_low (nparray [N_points]) – Tetrahedra indices of TetrahedraLinear object instance where the center points of the triangles of the lower surface are lying in

  • RegionOfInterestSurface.tet_idx_node_coord_mid (nparray [N_tri]) – Tetrahedra indices of TetrahedraLinear object instance where the nodes of the middle surface are lying in

make_GM_WM_surface(gm_surf_fname=None, wm_surf_fname=None, midlayer_surf_fname=None, mesh_folder=None, delta=0.5, X_ROI=None, Y_ROI=None, Z_ROI=None, layer=1, fn_mask=None, refine=False)

Generating a surface between WM and GM in a distance of delta 0…1 for ROI, given by Freesurfer mask or coordinates.

Parameters
  • gm_surf_fname (str or list of str) – Filename(s) of GM FreeSurfer surface(s) (lh and/or rh). Either relative to mesh_folder (fs_ID/surf/lh.pial) or absolute (/full/path/to/lh.pial)

  • wm_surf_fname (str or list of str) – Filename(s) of WM FreeSurfer surface(s) (lh and/or rh) Either relative to mesh_folder (fs_ID/surf/lh.white) or absolute (/full/path/to/lh.white)

  • midlayer_surf_fname (str or list of str) – Filename(s) of midlayer surface (lh and/or rh) Either relative to mesh_folder (fs_ID/surf/lh.central) or absolute (/full/path/to/lh.central)

  • mesh_folder (str) – Root folder of mesh, Needed if paths above are given relative, or refine=True

  • m2m_mat_fname ([defunct]) – Filename of mri2msh transformation matrix (e.g. in mri2msh: …/m2m_ProbandID/MNI2conform_6DOF.mat)

  • delta (float) – Distance parameter where surface is generated 0…1 (default: 0.5) - 0 -> WM surface - 1 -> GM surface

  • X_ROI (list of float) – Region of interest [Xmin, Xmax], whole X range if empty [0,0] or None (left - right)

  • Y_ROI (list of float) – Region of interest [Ymin, Ymax], whole Y range if empty [0,0] or None (anterior - posterior)

  • Z_ROI (list of float) – Region of interest [Zmin, Zmax], whole Z range if empty [0,0] or None (inferior - superior)

  • layer (int) – Define the number of layers: - 1: one layer - 3: additionally upper and lower layers are generated around the central midlayer

  • fn_mask (str) – Filename for FreeSurfer .mgh mask.

  • refine (bool, optional, default: False) – Refine ROI by splitting elements

Returns

  • node_coord_up (nparray of float [N_roi_points x 3]) – Node coordinates (x, y, z) of upper epsilon layer of ROI surface

  • node_coord_mid (nparray of float [N_roi_points x 3]) – Node coordinates (x, y, z) of ROI surface

  • node_coord_low (nparray of float [N_roi_points x 3]) – Node coordinates (x, y, z) of lower epsilon layer of ROI surface

  • node_number_list (nparray of int [N_roi_tri x 3]) – Connectivity matrix of intermediate surface layer triangles

  • delta (float) – Distance parameter where surface is generated 0…1 (default: 0.5) - 0 -> WM surface - 1 -> GM surface

  • tri_center_coord_up (nparray of float [N_roi_tri x 3]) – Coordinates (x, y, z) of triangle center of upper epsilon layer of ROI surface

  • tri_center_coord_mid (nparray of float [N_roi_tri x 3]) – Coordinates (x, y, z) of triangle center of ROI surface

  • tri_center_coord_low (nparray of float [N_roi_tri x 3]) – Coordinates (x, y, z) of triangle center of lower epsilon layer of ROI surface

  • fn_mask (str) – Filename for freesurfer mask. If given, this is used instead of *_ROIs

  • X_ROI (list of float) – Region of interest [Xmin, Xmax], whole X range if empty [0,0] or None (left - right)

  • Y_ROI (list of float) – Region of interest [Ymin, Ymax], whole Y range if empty [0,0] or None (anterior - posterior)

  • Z_ROI (list of float) – Region of interest [Zmin, Zmax], whole Z range if empty [0,0] or None (inferior - superior)

Example

make_GM_WM_surface(self, gm_surf_fname, wm_surf_fname, delta, X_ROI, Y_ROI, Z_ROI) make_GM_WM_surface(self, gm_surf_fname, wm_surf_fname, delta, mask_fn, layer=3)

project_on_midlayer(target, verbose=False)

Project a coordinate on the nearest midlayer node

Parameters
  • target (np.ndarray) – Coordinate to project as (3,) array

  • verbose (bool) – Print some verbosity information. Default: False

Returns

target_proj – Node coordinate of nearest midlayer node.

Return type

np.ndarray

subsample(dist=10, fn_sphere='')

Subsample ROI surface and return element indices

Parameters
  • dist (float) – Distance in mm the subsampled points lie apart

  • fn_sphere (str) – Name of ?.sphere file (freesurfer)

Returns

ele_idx – Element indices of the subsampled surface

Return type

ndarray of float [n_ele]

class pynibs.roi.RegionOfInterestVolume

Bases: object

Region of interest (volume) class

node_coord

Coordinates (x,y,z) of ROI tetrahedra nodes

Type

nparray [N_points x 3]

tet_node_number_list

Connectivity matrix of ROI tetrahedra

Type

nparray [N_tet_roi x 3]

tri_node_number_list

Connectivity matrix of ROI tetrahedra

Type

nparray [N_tri_roi x 3]

tet_idx_node_coord

Tetrahedra indices of TetrahedraLinear object instance where the ROI nodes are lying in

Type

nparray [N_points]

tet_idx_tetrahedra_center

Tetrahedra indices of TetrahedraLinear object instance where the center points of the ROI tetrahedra are lying in

Type

nparray [N_tet_roi]

tet_idx_triangle_center

Tetrahedra indices of TetrahedraLinear object instance where the center points of the ROI triangle are lying in. If the ROI is directly generated from the msh instance using “make_roi_volume_from_msh”, these indices are the triangle indices of the head mesh since the ROI mesh and the head mesh are overlapping. If the ROI mesh is not the same as the head mesh, the triangle center of the ROI mesh are always lying in a tetrahedra of the head mesh (these indices are given in this case)

Type

nparray [N_tri_roi]

Methods

make_roi_volume_from_msh(msh[, volume_type, ...])

Generate region of interest (volume) and extract nodes, triangles and tetrahedra from msh instance.

make_roi_volume_from_msh(msh, volume_type='box', X_ROI=None, Y_ROI=None, Z_ROI=None)

Generate region of interest (volume) and extract nodes, triangles and tetrahedra from msh instance.

Parameters
  • msh (object) – Mesh object instance of type TetrahedraLinear (see main.py)

  • volume_type (str) – Type of ROI (‘box’ or ‘sphere’)

  • X_ROI (list of float) –

    • type = ‘box’: [Xmin, Xmax] (in mm), whole X range if empty [0,0] or None (left - right)

    • type = ‘sphere’: origin [x,y,z]

  • Y_ROI (list of float) –

    • type = ‘box’: [Ymin, Ymax] (in mm), whole Y range if empty [0,0] or None (anterior - posterior)

    • type = ‘sphere’: radius (in mm)

  • Z_ROI (list of float) –

    • type = ‘box’: [Zmin, Zmax] (in mm), whole Z range if empty [0,0] or None (inferior - superior)

    • type = ‘sphere’: None

Returns

  • RegionOfInterestVolume.node_coord (nparray [N_points x 3]) – Coordinates (x,y,z) of ROI tetrahedra nodes

  • RegionOfInterestVolume.tet_node_number_list (nparray [N_tet_roi x 3]) – Connectivity matrix of ROI tetrahedra

  • RegionOfInterestVolume.tri_node_number_list (nparray [N_tri_roi x 3]) – Connectivity matrix of ROI tetrahedra

  • RegionOfInterestVolume.tet_idx_node_coord (nparray [N_points]) – Tetrahedra indices of TetrahedraLinear object instance where the ROI nodes are lying in

  • RegionOfInterestVolume.tet_idx_tetrahedra_center (nparray [N_tet_roi]) – Tetrahedra indices of TetrahedraLinear object instance where the center points of the ROI tetrahedra are lying in

  • RegionOfInterestVolume.tet_idx_triangle_center (nparray [N_tri_roi]) – Tetrahedra indices of TetrahedraLinear object instance where the center points of the ROI triangle are lying in. If the ROI is directly generated from the msh instance using “make_roi_volume_from_msh”, these indices are the triangle indices of the head mesh since the ROI mesh and the head mesh are overlapping. If the ROI mesh is not the same as the head mesh, the triangle center of the ROI mesh are always lying in a tetrahedra of the head mesh (these indices are given in this case)

pynibs.roi.clean_roi(img, vox_thres=0.5, fn_out=None)

Remove values < vox thres from image.

Parameters
  • img (str or nibabel.nifti1.Nifti1Image) –

  • vox_thres (float, optional) –

  • fn_out (str) –

Returns

  • img_thres (nibabel.nifti1.Nifti1Image)

  • img_thres (<file>) – If fn_out is specified, thresholded image is saved here

pynibs.roi.create_refine_spherical_roi(center, radius, final_tissues_nii, out_fn, target_size=0.5, outside_size=None, outside_factor=3, out_spher_fn=None, tissue_types=None, verbose=False)

Create a spherical roi nifti for simnibs 4 refinement. Only tissue types accoring to _tissue_types will be refined.

Use the resulting output file as input for –sizing_field in SimNIBS-4/simnibs/cli/meshmesh.py

pynibs.roi.determine_element_idx_in_mesh(fname, msh, points, compute_baricentric=False)

Finds the tetrahedron that contains each of the described points using a stochastic walk algorithm.

Parameters
  • fname (str or None) – Filename of saved .txt file containing the element indices (no data is saved when fname=None or fname=’’)

  • points (nparray [N x 3] or list of ndarray) – List of points to be queried

  • compute_baricenters (bool) – Wether or not to compute baricentric coordinates of the points

Returns

  • th_with_points (nparray) – List with the tetrahedron that contains each point. If the point is outside the mesh, the value will be -1

  • baricentric (nparray [n x 4](if compute_baricentric == True)) – Baricentric coordinates of point. If the point is outside, a list of zeros

Notes

1

Devillers, Olivier, Sylvain Pion, and Monique Teillaud. “Walking in a triangulation.” International Journal of Foundations of Computer Science 13.02 (2002): 181-199.

pynibs.roi.elem_workhorse(chunk, points_out, P1_all, P2_all, P3_all, P4_all, N_points_total, N_CPU)
Parameters
  • chunk (list of int) – Indices of points the CPU thread is computing the element indices for

  • points_out (nparray of float [N_points x 3]) – Coordinates of points, the tetrahedra indices are computed for

  • P1_all (nparray of float [N_tet x 3]) – Coordinates of first point of tetrahedra

  • P2_all (nparray of float [N_tet x 3]) – Coordinates of second point of tetrahedra

  • P3_all (nparray of float [N_tet x 3]) – Coordinates of third point of tetrahedra

  • P4_all (nparray of float [N_tet x 3]) – Coordinates of fourth point of tetrahedra

  • N_points_total (int) – Total number of points

  • N_CPU (int) – Number of CPU cores to use

Returns

tet_idx_local

Return type

nparray of int [N_points]

pynibs.roi.get_mask(areas, fn_annot, fn_inflated_fs, fn_out)

Determine freesurfer average mask .overlay file, which is needed to generate subject specific ROIs.

Parameters
  • areas (list of str) – Brodmann areas (e.g. [‘Brodmann.6’, ‘Brodmann.4’, ‘Brodmann.3’, ‘Brodmann.1’])

  • fn_annot (str) – Annotation file of freesurfer (e.g. ‘FREESURFER_DIR/fsaverage/label/lh.PALS_B12_Brodmann.annot’)

  • fn_inflated_fs (str) – Inflated surface of freesurfer average (e.g. ‘FREESURFER_DIR/fsaverage/surf/lh.inflated’)

  • fn_out (str) – Filename of .overlay file of freesurfer mask

Returns

<File> – fn_out.overlay file of freesurfer mask

Return type

.overlay file

pynibs.roi.get_sphere_in_nii(center, radius, nii=None, out_fn=None, thresh_by_nii=True, val_in=1, val_out=0, outside_val=0, outside_radius=inf)

Computes a spherical ROI for a given Nifti image (defaults to simnibs MNI T1 tissue). The ROI area is defined in nifti coordinates. By default, everything inside the ROI is set to 1, areas outside = 0. The ROI is further thresholded by the nifti. A nib.Nifti image is returned and optionally saved.

Parameters
  • center (array-like) – X, Y, Z coordinates in nifti space

  • radius (float) – radius of sphere

  • nii (string or nib.nifti1.Nifti1Image, optional) – The nifti image to work with.

  • out_fn (string, optional) – If provided, sphere ROI image is saved here

  • outside_val (float, default = None) – Value outside of outside_radius.

  • outside_radius (float, default = None) – Distance factor to define the ‘outside’ area: oudsidefactor * radius -> outside

Returns

  • sphere_img (nib.nifti1.Nifti1Image)

  • sphere_img (<file>, optional)

Other Parameters
  • thresh_by_nii (bool, optional) – Mask sphere by nii != 0

  • val_in (float, optional) – Value within ROI

  • val_out (float, optional) – Value outside ROI

Raises

ValueError – If the final ROI is empty.

pynibs.roi.load_roi_surface_obj_from_hdf5(fname)

Loading and initializing RegionOfInterestSurface object from .hdf5 mesh file.

Parameters

fname (str) – Filename (incl. path) of .hdf5 mesh file, e.g. from subject.fn_mesh_hdf5

Returns

obj – RegionOfInterestSurface object class instance

Return type

object instance or list of object instances [n_roi]

pynibs.roi.make_GM_WM_surface(gm_surf_fname, wm_surf_fname, mesh_folder, midlayer_surf_fname=None, delta=0.5, X_ROI=None, Y_ROI=None, Z_ROI=None, layer=1, fn_mask=None, refine=False)

Generating a surface between WM and GM in a distance of delta 0…1 for ROI, given by freesurfer mask or coordinates.

Parameters
  • gm_surf_fname (str or list of str) – Filename(s) of GM surface generated by freesurfer (lh and/or rh) (e.g. in mri2msh: fs_ID/surf/lh.pial)

  • wm_surf_fname (str or list of str) – Filename(s) of WM surface generated by freesurfer (lh and/or rh) (e.g. in mri2msh: fs_ID/surf/lh.white)

  • mesh_folder (str) – Path of mesh (parent directory)

  • midlayer_surf_fname (str or list of str) – filename(s) of midlayer surface generated by headreco (lh and/or rh) (e.g. in headreco: fs_ID/surf/lh.central) (after conversion)

  • m2m_mat_fname ([defunct]) – Filename of mri2msh transformation matrix (e.g. in mri2msh: m2m_ProbandID/MNI2conform_6DOF.mat)

  • delta (float) – Distance parameter where surface is generated 0…1 (default: 0.5) - 0 -> WM surface - 1 -> GM surface

  • X_ROI (list of float or None) – Region of interest [Xmin, Xmax], whole X range if empty [0,0] or None (left - right)

  • Y_ROI (list of float or None) – Region of interest [Ymin, Ymax], whole Y range if empty [0,0] or None (anterior - posterior)

  • Z_ROI (list of float or None) – Region of interest [Zmin, Zmax], whole Z range if empty [0,0] or None (inferior - superior)

  • layer (int) –

    Define the number of layers:

    • 1: one layer

    • 3: additionally upper and lower layers are generated around the central midlayer

  • fn_mask (string or None) – Filename for freesurfer mask. If given, this is used instead of *_ROIs

  • refine (bool, optional, default: False) – Refine ROI by splitting elements

Returns

  • surface_points_upper (nparray of float [N_points x 3]) – Coordinates (x, y, z) of surface + epsilon (in GM surface direction)

  • surface_points_middle (nparray of float [N_points x 3]) – Coordinates (x, y, z) of surface

  • surface_points_lower (nparray of float [N_points x 3]) – Coordinates (x, y, z) of surface - epsilon (in WM surface direction)

  • connectivity (nparray of int [N_tri x 3]) – Connectivity of triangles (indexation starts at 0!)

Example

make_GM_WM_surface(self, gm_surf_fname, wm_surf_fname, delta, X_ROI, Y_ROI, Z_ROI) make_GM_WM_surface(self, gm_surf_fname, wm_surf_fname, delta, mask_fn, layer=3)

pynibs.roi.nii2msh(mesh, m2m_dir, nii, out_folder, hem, out_fsaverage=False, roi_name='ROI')

Transform a nifti ROI image to subject space .mgh file.

Parameters
  • mesh (simnibs.Mesh or str) –

  • m2m_dir (str) –

  • nii (nibabel.nifti1.Nifti1Image or str) –

  • out_folder (str) –

  • hem (str) – ‘lh’ or ‘rh’

  • out_fsaverage (bool) –

Returns

roi – f”{out_folder}/{hem}.mesh.central.{roi_name}”

Return type

file

Other Parameters

roi_name (str) – How to name the ROI

pynibs.simnibs module

pynibs.simnibs.calc_e_in_midlayer_roi(phi_dadt, roi, subject, phi_scaling=1.0, mesh_idx=0, mesh=None, roi_hem='lh', depth=0.5, qoi=None)

This is to be called by Simnibs as postprocessing function per FEM solve.

Parameters
  • phi_dadt ((array-like, elmdata)) –

  • roi (pynibs.roi.RegionOfInterestSurface()) –

  • subject (pynibs.Subject()) –

  • phi_scaling (float) –

  • mesh_idx (int) –

  • mesh (simnibs.msh.Mesh()) –

  • roi_hem ('lh') –

  • depth (float) –

  • qoi (list of str) –

Returns

(roi.n_tris,4)

Return type

np.vstack((e_mag, e_norm, e_tan, e_angle)).transpose()

pynibs.simnibs.check_mesh(mesh, verbose=False)
pynibs.simnibs.fix_mesh(mesh, verbose=False)
pynibs.simnibs.read_coil_geo(fn_coil_geo)
Parameters

fn_coil_geo (str) – Filename of *.geo file created from SimNIBS containing the dipole information

Returns

  • dipole_pos (ndarray of float [n_dip x 3]) – Dipole positions (x, y, z)

  • dipole_mag (ndarray of float [n_dip x 1]) – Dipole magnitude

pynibs.simnibs.smooth_mesh(mesh, output_fn, smooth=0.8, approach='taubin', skin_only_output=False)

pynibs.subject module

class pynibs.subject.Mesh(mesh_name, subject_id, subject_folder)

Bases: object

” Mesh class to initialize default attributes.

Methods

fill_defaults(approach)

Initializes attributes for a headreco mesh.

print()

Print self information.

write_to_hdf5(fn_hdf5[, check_file_exist, ...])

Write this mesh' attributes to .hdf5 file.

fill_defaults(approach)

Initializes attributes for a headreco mesh.

print()

Print self information.

write_to_hdf5(fn_hdf5, check_file_exist=False, verbose=False)

Write this mesh’ attributes to .hdf5 file.

class pynibs.subject.ROI(subject_id, roi_name, mesh_name)

Bases: object

” Region of interest class to initialize default attributes.

Methods

print()

Print self information.

write_to_hdf5(fn_hdf5[, check_file_exist, ...])

Write this mesh' attributes to .hdf5 file.

print()

Print self information.

write_to_hdf5(fn_hdf5, check_file_exist=False, verbose=False)

Write this mesh’ attributes to .hdf5 file.

class pynibs.subject.Subject(subject_id, subject_folder)

Bases: object

Subject containing subject specific information, like mesh, roi, uncertainties, plot settings.

self.id

Subject id from MPI database

Type

str

Notes

Initialization

sub = subject(subject_ID, mesh)

Parameters

idstr

Subject id

fn_meshstr

.msh or .hdf5 file containing the mesh information

Subject.seg, segmentation information dictionary

fn_lh_wmstr

Filename of left hemisphere white matter surface

fn_rh_wmstr

Filename of right hemisphere white matter surface

fn_lh_gmstr

Filename of left hemisphere grey matter surface

fn_rh_gmstr

Filename of right hemisphere grey matter surface

fn_lh_curvstr

Filename of left hemisphere curvature data on grey matter surface

fn_rh_curvstr

Filename of right hemisphere curvature data on grey matter surface

Subject.mri, mri information dictionary

fn_mri_T1str

Filename of T1 image

fn_mri_T2str

Filename of T2 image

fn_mri_DTIstr

Filename of DTI dataset

fn_mri_DTI_bvecstr

Filename of DTI bvec file

fn_mri_DTI_bvalstr

Filename of DTI bval file

fn_mri_conformstr

Filename of conform T1 image resulting from SimNIBS mri2mesh function

Subject.ps, plot settings dictionary

see plot functions in para.py for more details

Subject.exp, experiment dictionary

infostr

General information about the experiment

datestr

Date of experiment (e.g. 01/01/2018)

fn_tms_navstr

Path to TMS navigator folder

fn_datastr

Path to data folder or files

fn_exp_csvstr

Filename of experimental data .csv file containing the merged experimental data information

fn_coilstr

Filename of .ccd or .nii file of coil used in the experiment (contains ID)

fn_mri_niistr

Filename of MRI .nii file used during the experiment

condstr or list of str

Conditions in the experiment in the recorded order (e.g. [‘PA-45’, ‘PP-00’])

experimenterstr

Name of experimenter who conducted the experiment

incidentsstr

Description of special events occured during the experiment

Subject.mesh, mesh dictionary

infostr

Information about the mesh (e.g. dicretization etc)

fn_mesh_mshstr

Filename of the .msh file containing the FEM mesh

fn_mesh_hdf5str

Filename of the .hdf5 file containing the FEM mesh

seg_idxint

Index indicating to which segmentation dictionary the mesh belongs

Subject.roi region of interest dictionary

typestr

Specify type of ROI (‘surface’, ‘volume’)

infostr

Info about the region of interest, e.g. “M1 midlayer from freesurfer mask xyz”

regionlist of str or float

Filename for freesurfer mask or [[X_min, X_max], [Y_min, Y_max], [Z_min, Z_max]]

deltafloat

Distance parameter between WM and GM (0 -> WM, 1 -> GM) (for surfaces only)

Methods

add_experiment_info(exp_dict)

Adding information about a particular experiment.

add_mesh_info(mesh_dict)

Adding filename information of the mesh to the subject object (multiple filenames possible).

add_mri_info(mri_dict)

Adding MRI information to the subject object (multiple MRIs possible).

add_plotsettings(ps_dict)

Adding ROI information to the subject object (multiple ROIs possible).

add_roi_info(roi_dict)

Adding ROI (surface) information of the mesh with mesh_index to the subject object (multiple ROIs possible).

add_experiment_info(exp_dict)

Adding information about a particular experiment.

Parameters

exp_dict (dictionary or list of dictionaries) – Dictionary containing information about the experiment

Notes

Adds Attributes

explist of dict

Dictionary containing information about the experiment

add_mesh_info(mesh_dict)

Adding filename information of the mesh to the subject object (multiple filenames possible).

Parameters

mesh_dict (dictionary or list of dictionaries) – Dictionary containing the mesh information

Notes

Adds Attributes

Subject.meshlist of dict

Dictionaries containing the mesh information

add_mri_info(mri_dict)

Adding MRI information to the subject object (multiple MRIs possible).

Parameters

mri_dict (dictionary or list of dictionaries) – Dictionary containing the MRI information of the subject

Notes

Adds Attributes

Subject.mrilist of dict

Dictionary containing the MRI information of the subject

add_plotsettings(ps_dict)

Adding ROI information to the subject object (multiple ROIs possible).

Parameters

ps_dict (dictionary or list of dictionaries) – Dictionary containing plot settings of the subject

Notes

Adds Attributes

Subject.pslist of dict

Dictionary containing plot settings of the subject

add_roi_info(roi_dict)

Adding ROI (surface) information of the mesh with mesh_index to the subject object (multiple ROIs possible).

Parameters

roi_dict (dict of dict or list of dictionaries) – Dictionary containing the ROI information of the mesh with mesh_index [mesh_idx][roi_idx]

Notes

Adds Attributes

Subject.mesh[mesh_index].roilist of dict

Dictionaries containing ROI information

pynibs.subject.check_file_and_format(fname)

Checking existence of file and transforming to list if necessary.

Parameters

fname (str or list of str) – Filename(s) to check

Returns

fname – Checked filename(s) as list

Return type

list of str

pynibs.subject.fill_from_dict(self, d)

Set all attributes from d in object self.

pynibs.subject.load_subject(fname, filetype=None)

Wrapper for pkl and hdf5 subject loader

Parameters
  • fname (str) – endwith(‘.pkl’) | endswith(‘.hdf5’)

  • filetype (str) – Explicitely set file version.

pynibs.subject.load_subject_hdf5(fname)

Loading subject information from .hdf5 file and returning subject object.

Parameters

fname (str) – Filename with .hdf5 extension (incl. path)

Returns

subject – Loaded Subject object

Return type

Subject object

pynibs.subject.load_subject_pkl(fname)

Loading subject object from .pkl file.

Parameters

fname (str) – Filename with .pkl extension

Returns

subject – Loaded Subject object

Return type

Subject object

pynibs.subject.save_subject(subject_id, subject_folder, fname, mri_dict=None, mesh_dict=None, roi_dict=None, exp_dict=None, ps_dict=None, **kwargs)

Saving subject information in .pkl or .hdf5 format (preferred)

Parameters
  • subject_id (str) – ID of subject

  • subject_folder (str) – Subject folder

  • fname (str) – Filename with .hdf5 or .pkl extension (incl. path)

  • mri_dict (list of dict, optional, default: None) – MRI info

  • mesh_dict (list of dict, optional, default: None) – Mesh info

  • roi_dict (list of list of dict, optional, default: None) – Mesh info

  • exp_dict (list of dict, optional, default: None) – Experiment info

  • ps_dict (list of dict, optional, default:None) – Plot-settings info

  • kwargs (str or np.array) – Additional information saved in the parent folder of the .hdf5 file

Returns

<File> – Subject information

Return type

.hdf5 file

pynibs.subject.save_subject_hdf5(subject_id, subject_folder, fname, mri_dict=None, mesh_dict=None, roi_dict=None, exp_dict=None, ps_dict=None, overwrite=True, check_file_exist=False, verbose=False, **kwargs)

Saving subject information in hdf5 file.

Parameters
  • subject_id (str) – ID of subject

  • subject_folder (str) – Subject folder

  • fname (str) – Filename with .hdf5 extension (incl. path)

  • mri_dict (list of dict, optional, default: None) – MRI info

  • mesh_dict (list of dict, optional, default: None) – Mesh info

  • roi_dict (list of list of dict, optional, default: None) – Mesh info

  • exp_dict (list of dict or dict of dict, optional, default: None) – Experiment info

  • ps_dict (list of dict, optional, default:None) – Plot-settings info

  • overwrite (bool) – Overwrites existing .hdf5 file

  • check_file_exist (bool) – Hide warnings.

  • verbose (bool) – Print information about meshes and ROIs.

  • kwargs (str or np.ndarray) – Additional information saved in the parent folder of the .hdf5 file

Returns

<File> – Subject information

Return type

.hdf5 file

pynibs.subject.save_subject_pkl(sobj, fname)

Saving subject object as pickle file.

Parameters
  • sobj (object) – Subject object to save

  • fname (str) – Filename with .pkl extension

Returns

<File> – Subject object instance

Return type

.pkl file

pynibs.tensor_scaling module

pynibs.tensor_scaling.ellipse_eccentricity(a, b)

Calculates the eccentricity of an 2D ellipse with the semi axis a and b. An eccentricity of 0 corresponds to a sphere and an eccentricity of 1 means complete eccentric (line) with full restriction to the other axis

Parameters
  • a (float) – First semi axis parameter

  • b (float) – Second semi axis parameter

Returns

e – Eccentricity (0…1)

Return type

float

pynibs.tensor_scaling.rescale_lambda_centerized(D, s, tsc=False)

Rescales the eigenvalues of the matrix D according to their eccentricity. The scale factor is between 0…1 a scale factor of 0.5 would not alter the eigenvalues of the matrix D. A scale factor of 0 would unify all eigenvalues to one value such that it corresponds to a isotropic sphere. A scale factor of 1 alters the eigenvalues in such a way that the resulting ellipsoid is fully eccentric and anisotropic.

Parameters
  • D (nparray of float [3 x 3]) – Diffusion tensor

  • s (float) – Scale parameter [0 (iso) … 0.5 (unaltered)… 1 (aniso)]

  • tsc (boolean) – Tensor singularity correction

Returns

Ds – Scaled diffusion tensor

Return type

nparray of float [3 x 3]

pynibs.tensor_scaling.rescale_lambda_centerized_workhorse(D, s, tsc=False)

Rescales the eigenvalues of the matrix D according to their eccentricity. The scale factor is between 0…1 a scale factor of 0.5 would not alter the eigenvalues of the matrix D. A scale factor of 0 would unify all eigenvalues to one value such that it corresponds to a isotropic sphere. A scale factor of 1 alters the eigenvalues in such a way that the resulting ellipsoid is fully eccentric and anisotropic

Parameters
  • D (ndarray of float [n x 9]) – Diffusion tensor

  • s (float) – Scale parameter [0 (iso) … 0.5 (unaltered)… 1 (aniso)]

  • tsc (boolean) – Tensor singularity correction

Returns

Ds – Scaled diffusion tensor

Return type

list of nparray of float [3 x 3]

pynibs.test_match_instrument_marker_string module

pynibs.tms_pulse module

pynibs.tms_pulse.biphasic_pulse(t, R=0.0338, L=1.55e-05, C=0.0001936, alpha=1089.8, f=2900)

Returns normalized single biphasic pulse waveform of electric field (first derivative of coil current)

Parameters
  • t (ndarray of float [n_t]) – Time array in seconds

  • R (float, optional, default: 0.0338 Ohm) – Resistance of coil in (Ohm)

  • L (float, optional, default: 15.5*1e-6 H) – Inductance of coil in (H)

  • C (float, optional, default: 193.6*1e-6) – Capacitance of coil in (F)

  • alpha (float, optional, default: 1089.8 1/s) – Damping coefficient in (1/s)

  • f (float, optional, default: 2900 Hz) – Frequency in (Hz)

Returns

e – Normalized electric field time course (can be scaled with electric field)

Return type

ndarray of float [n_t]

Module contents

Indices and tables